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0.1 Notation

• (model) X ⇠ P
✓

with values in X , where ✓ 2 ⌦ is the parameter

• (loss and risk) L(✓, d) and R(✓, �) = E
✓

[L(✓, �(X))], where �(X) is a statistic

• (average risk) For a prior ⇤ and estimator �, we denote by r(⇤, �) =

R
R(✓, �)⇤(d✓), which is the average

risk with respect to ⇤. We also let �

⇤
denote a Bayes estimator (when one exists) and r⇤ = r(⇤, �

⇤
) the

average risk of that estimator, also called the Bayes risk.

• (maximum risk) For an estimator � we let

¯

R(�) = sup

✓2⌦R(✓, �), which is its maximum risk.

0.2 Equivariance setting

• We say that a transformation g : X ! X leaves the model invariant if (i) it is one-to-one; (ii) if for any

✓ 2 ⌦, X ⇠ P
✓

implies gX ⇠ P
✓

0
for some ✓

0 2 ⌦, which allows one to define ḡ : ⌦ ! ⌦ that associates ✓

0
to

✓; (iii) ḡ is one-to-one (here we assume the model is identifiable).

• We work with a group G of transformations, each leaving the model invariant, and define

¯

G = {ḡ : g 2 G}.

• We work with an estimand h(✓) that is equivariant with respect to

¯

G. This allows one to define g

⇤
for each

g 2 G such that h(ḡ✓) = g

⇤
h(✓) for all ✓ 2 ⌦.

• We work with a loss function L that is invariant in that L(ḡ✓, g

⇤
d) = L(✓, d) for all ✓, all d, and all g.

• We then focus on estimators that are equivariant in the sense that �(gx) = g

⇤
�(x) for all x and all g.

0.3 Location model

This model is of the form X = (X1, . . . , Xn

) ⇠ f(x� ⇠) where f is a given density on Rn

and ⇠ 2 R is unknown.

(As usual, x� ⇠ is understood coordinate-wise.) The transformations of interest are of the form x 7! a+ x where

a 2 R. We want to estimate ⇠ and work with a loss of the form L(⇠, d) = ⇢(d � ⇠). Let Y = (Y1, . . . , Yn�1) with

Y

i

= X

i

�X

n

.

Theorem 1. In the present setting, let �0 be any equivariant statistic with finite risk, and suppose we may define

v

⇤
(y) = argmin

v2R E0[⇢(�0(X)� v) | Y = y]. Then �

⇤
(x) = �0(x)� v

⇤
(y) is MRE.

Corollary 1. Under squared error loss, the MRE may be expressed as �

⇤
(x) =

R1
�1 vf(x� v)dv/

R1
�1 f(x� v)dv.

Proposition 1. Under squared error loss, if an UMVUE exists and is equivariant, then it is MRE.

0.4 Scale model

This model is of the form X = (X1, . . . , Xn

) ⇠ ⌧

�1
f(x/⌧) where f is a given density on Rn

and ⌧ > 0 is unknown.

The transformations of interest are of the form x 7! bx where b > 0. We want to estimate ⌧ and work with a loss

of the form L(⇠, d) = �(d/⌧). Let Z = (Z1, . . . , Zn

) with Z

i

= X

i

/X

n

for i 6= n and Z

n

= X

n

/|X
n

|.

Theorem 2. In the present setting, let �0 be any equivariant statistic with finite risk, and suppose we may define

w

⇤
(z) = argmin

w>0 E1[�(�0(X)/w) | Z = z]. Then �

⇤
(x) = �0(x)/w

⇤
(z) is MRE.

Corollary 2. When L(⌧, d) = (d/⌧�1)

2
, the MRE may be expressed as �

⇤
(x) =

R1
0 w

n

f(wx)dw/

R1
0 w

n+1
f(wx)dw.

0.5 Location-scale model

This model is of the form X = (X1, . . . , Xn

) ⇠ ⌧

�n

f((x� ⇠)/⌧) where f is a given density on Rn

and ⇠ 2 R and

⌧ > 0 are both unknown. The transformations of interest are of the form x 7! a + bx where a 2 R and b > 0.

When our goal is to estimate ⇠, we work with a loss of the form L(⇠, ⌧ ; d) = ⇢((d � ⇠)/⌧). When our goal is to

estimate ⌧ , we work with a loss of the form L(⇠, ⌧ ; d) = �(d/⌧).



0.6 Bayes estimation

B1 Under loss L(✓, d) = w(✓)(d� h(✓))

2
, the Bayes estimator is �

⇤
(x) = E[w(✓)h(✓) |X = x]/E[w(✓) |X = x].

B2 In a Bayesian setting, suppose the loss is strictly convex (in d) and that Q denotes the marginal of X. Then

the Bayes estimator is unique if the Bayes risk is finite and, for any measurable set A, Q(A) = 0 implies

P

✓

(A) = 0 for all ✓.

0.7 Minimax estimation

M1 Suppose that ⇤ is a prior such that r⇤ =

¯

R(�

⇤
). Then �

⇤
is minimax, and uniquely so if it is unique Bayes.

M2 If an estimator is Bayes for some prior and has constant risk, it is minimax.

M3 If, for an estimator �, we can find a sequence of priors (⇤

k

) such that lim inf

k

r⇤k � ¯

R(�), then � is minimax.

M4 Consider ⌦0 ⇢ ⌦. If an estimator is minimax over ⌦0 and achieves its maximum risk at some ✓ 2 ⌦0, then

this estimator is also minimax over ⌦.

0.8 Admissibility

A1 A unique Bayes estimator is admissible.

A2 (Karlin’s theorem) Suppose X ⇠ f

✓

, where f

✓

(x) = �(✓)e

✓T (x)
with respect to some underlying measure. Let

⌦ = [✓⇤, ✓
⇤
] denote the natural parameter space. Suppose L(✓, d) = (d� h(✓))

2
, where h(✓) = E

✓

(T ). Then,

for a � 0 and b 2 R, a su�cient condition for

1
1+a

T +

a

1+a

b to be admissible is that

R 0
✓⇤
K(✓)d✓ = 1 and

R
✓

⇤

0 K(✓)d✓ = 1, where K(✓) = e

�ba✓

�(✓)

�a

.

A3 If an estimator has constant risk and is admissible, it is minimax.

A4 If an estimator is unique minimax, it is admissible.
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