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0.1 Notation

(model) X ~ Py with values in X', where 0 € ) is the parameter
(loss and risk) L(#,d) and R(6,0) = Eg[L(0,(X))], where §(X) is a statistic
(average risk) For a prior A and estimator §, we denote by r(A,d) = [ R(0,6)A(df), which is the average

risk with respect to A. We also let 6* denote a Bayes estimator (when one exists) and ry = r(A, ") the
average risk of that estimator, also called the Bayes risk.

e (maximum risk) For an estimator § we let R(8) = supgeq R(6,5), which is its maximum risk.

0.2 Equivariance setting

e We say that a transformation g : X — X leaves the model invariant if (i) it is one-to-one; () if for any
0 € Q, X ~ Py implies gX ~ Py for some 6’ € Q, which allows one to define g : Q — Q that associates 6’ to
0; (iii) g is one-to-one (here we assume the model is identifiable).

e We work with a group G of transformations, each leaving the model invariant, and define G = {g: g € G}.

e We work with an estimand h(f) that is equivariant with respect to G. This allows one to define g* for each
g € G such that h(gh) = g*h(0) for all 6 € Q.

e We work with a loss function L that is invariant in that L(g6, g*d) = L(0,d) for all 6, all d, and all g.

e We then focus on estimators that are equivariant in the sense that 6(gx) = g*0(z) for all x and all g.

0.3 Location model

This model is of the form X = (Xy,...,X,,) ~ f(z — &) where f is a given density on R and £ € R is unknown.
(As usual, x — ¢ is understood coordinate-wise.) The transformations of interest are of the form = +— a + x where
a € R. We want to estimate £ and work with a loss of the form L({,d) = p(d —&). Let Y = (Y1,...,Y,—1) with
Yi = Xi — X,

Theorem 1. In the present setting, let 09 be any equivariant statistic with finite risk, and suppose we may define
v*(y) = arg min, g Eo[p(do(X) —v) | Y =y|. Then 6*(x) = do(z) — v*(y) is MRE.

Corollary 1. Under squared error loss, the MRE may be expressed as 6*(x) = [~ vf(z—v)dv/ [Z_ f(z —v)dv.

Proposition 1. Under squared error loss, if an UMVUE exists and is equivariant, then it is MRE.

0.4 Scale model

This model is of the form X = (X1,...,X,) ~ 7 1 f(z/7) where f is a given density on R" and 7 > 0 is unknown.
The transformations of interest are of the form z +— bz where b > 0. We want to estimate 7 and work with a loss
of the form L(§,d) = ~v(d/7). Let Z = (Zu,...,Z,) with Z; = X;/X,, for i #n and Z,, = X,,/| Xy|.

Theorem 2. In the present setting, let 09 be any equivariant statistic with finite risk, and suppose we may define
w*(z) = argmin,~ o E1[y(d0(X)/w) | Z = z]. Then 6*(z) = do(z)/w*(2) is MRE.

Corollary 2. When L(7,d) = (d/7—1)?, the MRE may be expressed as 0*(z) = [;° w" f(wz)dw/ [ w™*! f(wz)dw.

0.5 Location-scale model

This model is of the form X = (Xi,...,X,,) ~ 77 "f((x — &)/7) where f is a given density on R" and £ € R and
7 > 0 are both unknown. The transformations of interest are of the form x — a + bz where a € R and b > 0.
When our goal is to estimate &, we work with a loss of the form L(§,7;d) = p((d — &)/7). When our goal is to
estimate 7, we work with a loss of the form L(&,7;d) = v(d/7).



0.6

B1
B2

0.7
M1
M2
M3
M4

0.8
Al
A2

A3
A4

Bayes estimation
Under loss L(0,d) = w()(d — h(0))?, the Bayes estimator is 6 (z) = E[w(0)h(0) | X = z]/E[w(f) | X = z].

In a Bayesian setting, suppose the loss is strictly convex (in d) and that @) denotes the marginal of X. Then
the Bayes estimator is unique if the Bayes risk is finite and, for any measurable set A, Q(A) = 0 implies
Py(A) =0 for all 6.

Minimax estimation

Suppose that A is a prior such that ry = R(6"). Then ¢* is minimax, and uniquely so if it is unique Bayes.
If an estimator is Bayes for some prior and has constant risk, it is minimax.

If, for an estimator d, we can find a sequence of priors (Ay) such that liminfy 74, > R(6), then § is minimax.

Consider Q¢ C 2. If an estimator is minimax over ¢}y and achieves its maximum risk at some 6 € 2y, then
this estimator is also minimax over ).

Admissibility
A unique Bayes estimator is admissible.

(Karlin’s theorem) Suppose X ~ fy, where fy(z) = 3(8)e?”(®) with respect to some underlying measure. Let
Q = [0, 0*] denote the natural parameter space. Suppose L(,d) = (d — h())?, where h(0) = Ey(T). Then,
for a > 0 and b € R, a sufficient condition for -7 + Tib to be admissible is that f;i K(6)dd = oo and

1+a
17" K(6)d8 = oo, where K (0) = e~ 3(6) .
If an estimator has constant risk and is admissible, it is minimax.

If an estimator is unique minimax, it is admissible.



