Math 281 – Qualifying Exam – Fall 2020

Define any symbol you use unless its meaning is clear from context. Name any result you use if it has a name. Be concise and clear. Justify all your answers.

Problem 1. Suppose that we observe data in pairs $(X,Y) \in \mathbb{R}^d \times \{\pm 1\}$, where the data come from a logistic model with $X \sim P_0$ and

$$p_{\theta}(y|x) = \frac{1}{1 + e^{-y \cdot x^{\mathsf{T}}\theta_0}}.$$

Define the log-loss $\ell_{\theta}(y|x) = \log(1 + e^{-y \cdot x^{\mathsf{T}}\theta})$. Let $\hat{\theta}_n$ minimize the empirical logistic loss

$$L_n(\theta) = \frac{1}{n} \sum_{i=1}^n \ell_{\theta}(Y_i | X_i) = \frac{1}{n} \sum_{i=1}^n \log(1 + e^{-Y_i X_i^{\mathsf{T}} \theta})$$

from pairs (X_i, Y_i) drawn from the logistic model with parameter θ_0 . Assume that the covaraites $X_i \in \mathbb{R}^d$ are i.i.d. and satisfy $\mathbb{E}(X_i X_i^{\mathsf{T}}) = \Sigma$ is positive definite and $\mathbb{E}||X_i||_2^4 < \infty$.

- (a) Let $L(\theta) = \mathbb{E}_{\theta_0}\{\ell_{\theta}(Y|X)\}$ be the population logistic loss. Describe conditions under which θ_0 is the unique minimizer of $\theta \mapsto L(\theta)$, that is, $\theta_0 \in \arg\min_{\theta \in \mathbb{R}^d} L(\theta)$.
- (b) Under these assumptions show that $\hat{\theta}_n$ is consistent estimator of θ_0 as $n \to \infty$. Provide details of your work. Hint: You may use the following fact about convex functions. For any convex function h, if there is some r > 0 and a point x_0 such that $h(x) > h(x_0)$ for all x such that $||x x_0||_2 = r$. Then $h(x') > h(x_0)$ for all x' with $||x' x_0||_2 > r$.
- (c) Find the asymptotic distribution of $\sqrt{n}(\hat{\theta}_n \theta_0)$, provided that it is consistent. Describe the asymptotic covariance matrix of $\hat{\theta}_n$. Provide a heuristic argument to justify your findings.

Problem 2. Suppose that X_1, \ldots, X_n is a random sample from a normal distribution with unit variance. Let $F(t) = \mathbb{P}(X_1 \leq t)$ be the cumulative distribution function (CDF) of X_1 , and let $F_n(\cdot)$ be the empirical CDF. Given some $t \in \mathbb{R}$,

- (a) Show that both $F_n(t)$ and $\Phi(t \bar{X}_n)$ are consistent estimators of F(t), where $\bar{X}_n = (1/n) \sum_{i=1}^n X_i$;
- (b) Compare the asymptotic variance of the estimators $F_n(t)$ and $\Phi(t \bar{X}_n)$.

Refer by number any result from the reference sheet that you use.

Problem 3. Suppose we observe $X \sim \text{Bin}(n, \theta)$, where n is known, and our goal is to estimate θ . We use the *squared error loss*. (Note that an estimator δ is here simply a function from $\{0, \ldots, n\}$ to \mathbb{R} .)

(a) Derive an optimal estimator among unbiased estimators. Is it unique in that regard?

In what follows, we measure performance of an estimator δ based on the following average risk

$$r(\delta) = \int_0^1 \mathbb{E}_{\theta}[(\delta(X) - \theta)^2] w(\theta) d\theta$$
, where $w(\theta) = \frac{1}{\theta(1 - \theta)}$

- (b) Is the prior proper or improper? Explain.
- (c) Show that $r(\delta) < \infty$ if and only if $\delta(0) = 0$ and $\delta(n) = 1$.
- (d) Derive an estimator that minimizes this average risk. Is it unique in that regard?