MATH 240 QUALIFYING EXAM: SPRING 2011

<u>Instructions</u>: Please answer all 5 questions. Partial credit will be given, so you should attempt all problems. You may quote any standard proposition/theorem from Folland or Lieb-Loss, but **not** the homeworks. If you use a major result like MCT etc, you need to state the theorem you are using *explicitly*. In this exam dx is integration with respect to Lebesgue measure, and |E| denotes the Lebesgue measure of E.

- I) True/False, Short Answer: Please answer True or False. You must support your claim with a short explanation or counterexample, but you need not give an entire proof:
 - a) (5 pts) If $T_n \in \mathcal{L}(X,Y)$ is a sequence of bounded linear operators with X,Y are Banach spaces, then if $Tx := \lim_n T_n x$ exists in the Y norm for all $x \in X$, one has $T \in \mathcal{L}(X,Y)$.
 - b) (5 pts) Let (X, \mathcal{M}, μ) be any measure space. If $f_n, f \in L^1(d\mu)$ are measurable functions such that $f_n \to f$ μ -a.e. and $\lim \int f_n \to \int f$, then $f_n \to f$ in $L^1(d\mu)$.
 - c) (5 pts) If $\{X_{\alpha}\}_{{\alpha}\in A}$ is any collection of compact Hausdorff topological spaces, then $E\subset \Pi_{{\alpha}\in A}X_{\alpha}$ with the product topology is compact iff it is closed.
 - d) (5 pts) If $f_n \in L^2([0,1])$ (Lebesgue measure) converge weakly to $f \in L^2([0,1])$, then there is a subsequence such that $f_{n_k} \to f$ pointwise a.e. with respect to Lebesgue measure.
 - e) (5 pts) If μ is positive and finite Borel measure on \mathbb{R}^n which is a.c. with respect to Lebesgue measure, then $\lim_{r\to 0} \frac{\mu(B_r(x))}{|B_r(x)|} \to 0$ for a.e. $x \in \mathbb{R}^n$ implies $\mu \equiv 0$. Here $B_r(x)$ is the ball of radius r at x.
- II) For each integer k > 0 denote by $\Delta_k(j) = [j2^{-k}, (j+1)2^{-k}]$ where $j \in \mathbb{Z}$, the dyadic rational interval of length 2^{-k} starting at $j2^{-k}$. Let $f \in L^1(\mathbb{R})$, and define:

$$A_k(f)(x) = \sum_j a_k(j) \mathbf{1}_{\Delta_k(j)}(x) , \qquad a_k(j) = \frac{1}{|\Delta_k(j)|} \int_{\Delta_k(j)} f(y) dy .$$

- a) (5 pts) Prove that $||A_k f||_{L^1(\mathbb{R})} \le ||f||_{L^1(\mathbb{R})}$ for all $k > 0, f \in L^1(\mathbb{R})$.
- b) (10 pts) Show that if $f \in L^1(\mathbb{R})$ then $A_k(f) \to f$ in $L^1(\mathbb{R})$ as $k \to \infty$. (Hint: First try to show this when f is continuous and compactly supported).
- III) (15 pts) Let $1 \leqslant p, p' \leqslant \infty$ be fixed, with p, p' dual indices. Suppose $K(x, y) \geqslant 0$ is a Lebesgue measurable function on $\mathbb{R}^n \times \mathbb{R}^n$ such that there exists a constant $0 \leqslant K_0 < \infty$ with:

$$\iint g(x)K(x,y)f(y)dxdy \leqslant K_0 \|g\|_{L^{p'}(\mathbb{R}^n)} \|f\|_{L^p(\mathbb{R}^n)},$$

for all measurable $f, g \ge 0$ on \mathbb{R}^n . Show that if $f \in L^p(\mathbb{R}^n)$, then the function $Kf(x) := \int_{\mathbb{R}^n} K(x, y) f(y) dy$ is well defined for (Lebesgue) a.e. $x \in \mathbb{R}^n$, and one has $\|Kf\|_{L^p(dx)} \le K_0 \|f\|_{L^p(dx)}$.

- IV) Let (X, \mathcal{M}, μ) be a finite measure space.
 - a) (10 pts) Let $1 \leq p \leq \infty$. Show that for fixed M > 0 the ball $||f||_{L^p(d\mu)} \leq M$ is closed in $L^1(d\mu)$.
 - b) (10 pts) Show that the whole of $L^p(d\mu)$ is closed in $L^1(d\mu)$ iff there exists C>0 such that $\|f\|_{L^p(d\mu)} \leq C\|f\|_{L^1(d\mu)}$ for all $f\in L^p(d\mu)$.
 - c) (10 pts) Now let $1 . Show that the assumptions of part b) above holds iff both <math>L^p(d\mu)$ and $L^1(d\mu)$ are finite dimensional. (Hint: Show that if (X, \mathcal{M}, μ) is any measure space where there exists $0 < c, C < \infty$ such that $c \le \mu(E) \le C$ for every set $E \in \mathcal{M}$ of nonzero measure, then $L^1(d\mu)$ is finite dimensional).
- V) (15 pts) Let $f \in L^2([0, 2\pi])$, and set $S_N f(x) = \sum_{n=-N}^N \hat{f}(n) e^{inx}$ to be the N^{th} symmetric partial sum of its Fourier series. Here we are defining $\hat{f}(n) = (2\pi)^{-1} \int_0^{2\pi} e^{-inx} f(x) dx$. Show that there exists a subsequence $N_k \to \infty$ so that $S_{N_k} f \to f$ a.e. with respect to Lebesgue measure in $[0, 2\pi]$.

1