MATH 240 QUALIFYING EXAM: FALL 2011

<u>Instructions</u>: Please answer all 5 questions. Partial credit will be given, so you should attempt all problems. You may quote any standard proposition/theorem from Folland or Lieb-Loss, but **not** the homeworks. If you use a major result like MCT etc, you need to state the theorem you are using *explicitly*. In this exam dx is integration with respect to Lebesgue measure, and |E| denotes the Lebesgue measure of E.

- I) a) (10 pts) Let $E \subseteq [0,1]$ be Lebesgue measurable. Suppose there exists a fixed $\epsilon > 0$ such that $|E \cap (a,b)| \ge \epsilon |a-b|$ for all intervals $(a,b) \subseteq [0,1]$. Show that one must have |E| = 1.
 - b) (10 pts) Give an example of a Lebesgue measurable set $E \subseteq [0,1]$ with 0 < |E| < 1 and $|E \cap (a,b)| > 0$ for all nontrivial intervals $(a,b) \subseteq [0,1]$. Explain why this example does not contradict part a) above.
- II) a) (10 pts) Let X be an infinite dimensional Banach space. Prove that X endowed with the weak topology is not a complete metric space. (Hint: Begin by showing that any norm bounded set in X is nowhere dense in the weak topology.)
 - b) (10 pts) Let X be a Banach space and X^* its dual. Suppose that there exists countably many linear functionals $L_n \in X^*$ with the following property: Any sequence $x_j, x \in X$ converges weakly $x_j \to x$ iff $L_n(x_j) \to L_n(x)$ for all n. Show that X must be finite dimensional. (Hint: Consider the function $d(x,y) = \sum_n 2^{-n} \frac{|L_n(x-y)|}{1+|L_n(x-y)|}$.)
- III) a) (15 pts) Let (X, \mathcal{M}, μ) be a finite measure space. Suppose that $f_n \in L^1(d\mu)$ is a sequence of functions with the property that for every $\epsilon > 0$ there exists a $\delta > 0$ such that for all $E \in \mathcal{M}$:

$$|E| < \delta \implies \sup_{n} \int_{E} |f_{n}| d\mu < \epsilon.$$

Suppose in addition that there exists f with $f_n \to f$ μ -a.e.. Show that $f_n \to f$ in $L^1(d\mu)$.

- b) (5 pts) Give a simple example to show that if one drops the finite measure assumption but keeps all the other hypotheses above, the conclusion can fail.
- IV) (20 pts) Let $K \in L^1(\mathbb{R}^d)$ with Lebesgue measure. Suppose that $\psi_n \in L^2(\mathbb{R}^d)$ is a sequence of functions such that $\psi_n \rightharpoonup \psi$ (weak L^2 convergence), and also with the property that $\psi_n \equiv 0$ in |x| > 1. Show that $f_n(x) = \int_{\mathbb{R}^d} K(x-y)\psi_n(y)dy$ converges to $f(x) = \int_{\mathbb{R}^d} K(x-y)\psi(y)dy$ strongly in $L^2(\mathbb{R}^d)$.
- V) (20 pts) Let $f: \mathbb{R} \to \mathbb{R}$ be a 2π periodic function, i.e. $f(x) = f(x+2\pi)$, such that there exists C > 0 (possibly large) and $\epsilon > 0$ (possibly small) with $|f(x) f(y)| \leq C|x-y|^{\frac{1}{2}+\epsilon}$. Show that the Fourier series of f converges uniformly. (Hint: Half credit will be given for the special case $\epsilon = \frac{1}{2}$, which can be treated more directly. For the general case try computing $\int_0^{2\pi} |f(x+h) f(x)|^2 dx$ two different ways.)