Ph.D./Masters Qualifying Examination in Numerical Analysis

Examiners: Randolph Bank and Philip E. Gill

9:00am-12:00pm Friday May 21, 1999

Name		#1.1	20	
		#1.2	20	
		#1.3	20	
		#2.1	20	
		#2.2	20	
		#2.3	20	
		#3.1	20	
		#3.2	20	
		Total	160	

- Add your name in the box provided and staple this page to your solutions.
- Write your name clearly on every sheet submitted.

2

1. Linear Equations and Linear Least Squares

Question 1.1. Let \hat{x} be an approximate solution of Ax = b, where A is a nonsingular $n \times n$ matrix, n > 1.

- (a) Prove that an infinite number of matrices F satisfy the relation $(A+F)\hat{x}=b$.
- (b) Find a matrix E that has the smallest two-norm among all matrices F satisfying $(A+F)\widehat{x}=b$.
- (c) Show that for the matrix E of part (b),

$$\frac{\|r\|}{\|b\|} \ge \frac{\|E\|/\|A\|}{1 + \|E\|/\|A\|},$$

where all norms are two-norms. Hence show that if

$$\frac{\|r\|}{\|b\|} \le \epsilon < 1, \quad \text{then} \quad \frac{\|E\|}{\|A\|} \le \frac{\epsilon}{1 - \epsilon}.$$

Briefly state the significance of this result when solving linear systems using Gaussian elimination.

Question 1.2.

(a) Let u denote the unit roundoff and assume that nu < 1 for some positive integer n. If $|\delta_i| \le u$, show that

$$\prod_{i=1}^{n} (1 + \delta_i) = 1 + \theta_n,$$

where $|\theta_n| \leq \gamma_n = nu/(1-nu)$.

- (b) Consider the matrix-vector product y = Ax for $A \in \mathbb{R}^{m \times n}$. Assuming the standard model for floating-point computation, let \widehat{y} denote the computed value of y when A and x are representable. Derive the following:
 - (i) A bound on the Frobenius norm of the absolute backward error in \hat{y} , assuming that A is data and x is exact.
 - (ii) A bound on the two-norm of the absolute forward error in \hat{y} .
 - (iii) A bound on the two-norm of the relative forward error in \hat{y} , assuming that A is nonsingular.

Question 1.3. Assume that $A \in \mathbb{R}^{m \times n}$.

- (a) Derive the necessary and sufficient condition for a vector to be a solution of minimum two-norm for the compatible system Ax = b.
- (b) Show that the least-length solution of the compatible system Ax = b is unique.
- (c) For any x, let r denote the residual vector b Ax. Derive the necessary and sufficient conditions for a vector to solve the problem min $||b Ax||_2$. Discuss the circumstances under which the least-squares solution is unique.
- (d) If $A \in \mathbb{R}^{n \times n}$ and $x \in \mathbb{R}^n$ are given, find the value λ^* that minimizes the function $||Ax \lambda x||_2$.

2. Eigenvalues and Singular Values

Question 2.1. Prove the existence of the singular-value decomposition for an $m \times n$ complex-valued matrix with $m \ge n$.

Question 2.2. Assume that $A \in \mathbb{C}^{n \times n}$. Given a positive scalar ϵ and $E \in \mathbb{C}^{n \times n}$ such that $||E||_2 = 1$, let λ denote an eigenvalue of $A + \epsilon E$.

(a) Show that if λ is not an eigenvalue of A, then λ lies in the domain

$$\frac{1}{\|(A-\lambda I)^{-1}\|_2} \le \epsilon.$$

(b) Show that if E is of the form $-pq^H$, then the value of ϵ that produces the eigenvalue λ is

$$\epsilon = \frac{1}{q^H(A - \lambda I)^{-1}p}.$$

(c) Hence find a perturbation that gives an eigenvalue on the boundary of the domain defined in part (a).

Question 2.3. Consider the unshifted QR method for finding the eigenvalues of a matrix $A \in \mathbb{C}^{n \times n}$. If R_k and Q_k are the matrices generated at iteration k, show that

- $(\mathbf{a}) \ A_{k+1} = Q_k^H A_k Q_k.$
- **(b)** $A_{k+1} = Q_k^H Q_{k-1}^H \cdots Q_0^H A Q_0 Q_1 \cdots Q_k.$
- (c) $A^{k+1} = \hat{Q}_k \hat{R}_k$, where $\hat{R}_k = R_k R_{k-1} \cdots R_1 R_0$ and $\hat{Q}_k = Q_0 Q_1 \cdots Q_k$.
- (d) Define an unshifted QR method that requires $O(n^2)$ floating-point operations each iteration.

4

3. Interpolation, Approximation and ODEs

Question 3.1. Let $f \in C^2(I)$, I = [a, b], and let $x_i = a + ih$, $0 \le i \le n$, h = (b-a)/n be a uniform mesh on I. Let S be the space of continuous piecewise linear polynomials with respect to this uniform mesh and let \tilde{f} denote the continuous piecewise linear polynomial interpolant of f.

- (a) Compute the dimension of S and define the standard nodal basis functions $\{\phi_i\}$ for S.
- (b) Using the Peano Kernel Theorem, prove:

$$||f - \tilde{f}||_{\mathcal{L}^2(I)} \le Ch^2 ||f''||_{\mathcal{L}^2(I)}$$

(You do NOT need to explicitly evaluate the constant C.)

Question 3.2. Let

$$\mathcal{I}(f) = \int_{-1}^{1} f(x) dx$$

Consider the two point Gauss-Legendre quadrature formula of the form

$$Q(f) = w_1 f(x_1) + w_2 f(x_2) \tag{3.1}$$

- (a) Find the knots x_1 and x_2 and the weights w_1 and w_2 for the Gauss-Legendre formula (3.1).
- (b) What is the form of the error $\mathcal{I}(f) \mathcal{Q}(f)$? Be sure to explicitly evaluate the constant.
- (c) Write down the composite formula for approximating

$$\int_a^b f(x)dx$$

on a uniform mesh of size h (note here the reference interval is [-1,1]).

(d) Write down an expression for the error in the composite formula.