Ph.D./Masters Qualifying Examination in Numerical Analysis

Examiners: Li-Tien Cheng, Michael Holst, Melvin Leok

 $\begin{array}{c} 10\mathrm{am}\text{--}1\mathrm{pm}\\ \mathrm{Monday\ May\ 23,\ 2011}\\ 2402\ \mathrm{AP\&M} \end{array}$

#1.1

#1.2

#3.2

Total

25

25

25

200

	1		
	#1.3	25	
	#2.1	25	
Name	#2.2	25	
	#2.3	25	
	#3.1	25	

- Add your name in the box provided and staple this page to your solutions.
- Write your name clearly on every sheet submitted.

1. Numerical Linear Algebra (270A)

Question 1.1. Consider the PDE

$$\frac{\partial^2 u}{\partial y^2}(y,z) + \frac{\partial^2 u}{\partial z^2}(y,z) = 1$$

for $(y, z) \in (0, 1) \times (0, 1)$ with the condition u(y, z) = y + z on the square boundary. Let h = 1/3 and let $y_i = ih$ and $z_j = jh$ for i, j = 1, 2. Set up a linear system Ax = b, explicitly writing out A, x, and b, that for calculating the approximations $U_{i,j}$ of $u(y_i, z_j)$ for i, j = 1, 2 using

$$\frac{\partial^2 u}{\partial y^2}(y_i, z_j) \approx \frac{u(y_i + h, z_j) - 2u(y_i, z_j) + u(y_i - h, z_j)}{h^2}$$
$$\frac{\partial^2 u}{\partial z^2}(y_i, z_j) \approx \frac{u(y_i, z_j + h) - 2u(y_i, z_j) + u(y_i, z_j - h)}{h^2}.$$

Question 1.2. Let $A \in \mathbb{F}^{n \times n}$ (\mathbb{F} is the set of machine numbers) admit an LU factorization where $L = (l_{ij})$ is computed through the formula

$$l_{ij} = \frac{a_{ij} - \sum_{k=1}^{j-1} l_{ik} u_{kj}}{u_{jj}},$$

for i > j, and $U = (u_{ij})$ through another formula. In the presence of roundoff errors, $\hat{L} = (\hat{l}_{ij})$ and $\hat{U} = (\hat{u}_{ij})$ are computed instead, in machine numbers. Determine an ordering for the floating point operations in the formula for l_{ij} such that there exists e_{ij} satisfying, for i > j:

$$a_{ij} = \sum_{k=1}^{j} \hat{l}_{ik} \hat{u}_{kj} + e_{ij}$$

and

$$|e_{ij}| \le nu \sum_{k=1}^{j} |\hat{l}_{ik}| |\hat{u}_{kj}| + \mathcal{O}(u^2)$$

when u > 0, the unit roundoff error, is small enough.

Question 1.3. Let $A \in \mathbb{R}^{n \times n}$ and let D, L, U be diagonal, strictly lower triangular, and strictly upper triangular matrices, respectively, such that A = D - L - U. Prove if

- A is nonsingular, has nonzero diagonal elements, and is consistently ordered $(\det(\alpha D^{-1}L + \alpha^{-1}D^{-1}U \kappa))$ is independent of $\alpha \in \mathbb{C}$, $\alpha \neq 0$ for all $\kappa \in \mathbb{C}$);
- the eigenvalues μ of $B_J = D^{-1}(L+U)$ satisfy $\mu \in \mathbb{R}$ and $|\mu| < 1$;
- $0 < \omega < 2$;

then SOR, with iteration matrix $B_{SOR} = (D - \omega L)^{-1} [\omega U + (1 - \omega)D]$, is convergent. (You may use the fact that $x^2 - bx + c = 0$ with $b, c \in \mathbb{R}$ implies |x| < 1 if and only if |c| < 1 and 1 + c - |b| > 0).

2. Numerical Approximation and Nonlinear Equations (270B)

Question 2.1. Let $F(x): D \subset \mathbb{R}^n \to \mathbb{R}^n$ be continuously differentiable on an open convex set D, assume that $F(x^*) = 0$ for some $x^* \in D$, and assume that F'(x) is nonsingular on D.

- (a) State and prove the basic convergence theorem for Newton's method for solving F(x) = 0, establishing superlinear rate of convergence.
- (b) Under the assumption that the Jacobian $F'(x): D \subset \mathbb{R}^n \to \mathbb{R}^{n \times n}$ is Lipschitz continuous with Lipschitz constant γ , show that the error in the linear model

$$L_k(x) = F(x^k) + F'(x^k)(x - x^k)$$

of F(x) can be bounded as follows:

$$||F(x) - L_k(x)|| \le \frac{1}{2}\gamma ||x - x^k||^2.$$

(c) Assume now the Jacobian F'(x) is Lipschitz. Use the result from part (b) to prove that Newton's method for F(x) = 0 converges with quadratic rate.

Question 2.2. Consider the following tabulated data for a function $f: \mathbb{R} \to \mathbb{R}$:

X	f(x)
0	1
1	3
2	13

- (a) Construct the (unique) quadratic interpolation polynomial $p_2(x)$ which interpolates the data.
- (b) If the function f(x) that generated the above data was actually the cubic polynomial $P_3(x) = x^3 + x^2 + 1$, derive an error bound for the interval [0, 2].
- (c) Use the composite trapezoid rule with two intervals to construct an approximation to:

$$\int_0^2 f(x) \ dx,$$

and give an expression for the error.

Question 2.3. We consider now the problem of best L^p -approximation of a (continuous) function $u(x) = x^3$ over the interval [0, 1] from a subspace $V \subset L^p([0, 1])$.

- (a) Determine the best L^2 -approximation in the subspace of linear functions; i.e., $V = \text{span}\{1, x\}$, and justify the technique you use.
- (b) Why (specifically) does this problem become much more difficult if we consider the case $p \neq 2$?
- (c) Let X be a Hilbert space, and let $U \subset X$ be a subspace. Given $u \in X$, prove that the decomposition $u = u_0 + z$, with $u_0 \in U$ and $z \in U^{\perp}$, as provided by the Hilbert Space Projection Theorem, is a unique decomposition.

3. Numerical Ordinary Differential Equations (270C)

Question 3.1. Consider the following Runge–Kutta method for the differential equation y' = f(t, y), where f is smooth:

$$y_{n+1} = y_n + \alpha h f(t_n, y_n) + \frac{h}{2} f(t_n + \beta h, y_n + \beta h f(t_n, y_n)).$$

- (a) Write down the Butcher tableau for this Runge–Kutta method.
- (b) For what values of $\{\alpha, \beta\}$ is the method consistent?
- (c) For what values of $\{\alpha, \beta\}$ is the method stable?
- (d) For what values of $\{\alpha, \beta\}$ is the method most accurate?

Question 3.2. Consider the 3-step Adams-Bashforth method,

$$y_{n+3} = y_{n+2} + h \left[\frac{23}{12} f(t_{n+2}, y_{n+2}) - \frac{4}{3} f(t_{n+1}, y_{n+1}) + \frac{5}{12} f(t_n, y_n) \right]$$

- (a) Determine the order of accuracy of this linear multistep method.
- (b) Find the leading error constant for this method.
- (c) Is the method convergent? Justify your answer.