Ph.D./Masters Qualifying Examination in Numerical Analysis

Examiners: Philip E. Gill and Bo Li

1–4pm Friday May 22, 2009 6402 AP&M

#1.1

#3.2

Total

30

 $\frac{30}{240}$

- Add your name in the box provided and staple this page to your solutions.
- Write your name clearly on every sheet submitted.

2

1. Norms, Condition Numbers and Linear Equations

Question 1.1.

(a) Let **u** denote the unit roundoff, and assume that $n\mathbf{u} < 1$ for the positive integer n. If $\{\delta_i\}$ are n scalars such that $|\delta_i| \leq \mathbf{u}$, prove that

$$\prod_{i=1}^{n} (1 + \delta_i) = 1 + \theta_n, \quad \text{where} \quad |\theta_n| \le \gamma_n,$$

with $\gamma_n = n\mathbf{u}/(1 - n\mathbf{u})$.

(b) State the standard rounding-error model for floating-point arithmetic. Given representable numbers a and b, compute the backward and forward relative error for the floating-point value \hat{s} of the expression $s = \sqrt{a^2 + b^2}$. (You may assume that the square root function conforms to the standard rounding-error model for floating-point arithmetic.)

Question 1.2.

- (a) Define the spectral condition number $\operatorname{cond}_2(A)$ for any $A \in \mathbb{R}^{m \times n}$. State (but do not prove) an expression for $\operatorname{cond}_2(A)$ in terms of the singular values of A.
- (b) Let $A \in \mathbb{R}^{n \times n}$ be nonsingular. Find a solution of the problem

$$\min_{E \in \mathbb{R}^{n \times n}} \{ ||E||_2 : A + E \text{ singular} \}.$$

(c) Prove that $1/\text{cond}_2(A)$ is the relative two-norm distance of A to the nearest singular matrix.

Question 1.3. Assume that A is an $m \times n$ matrix with rank $k \ (k < \min(m, n))$.

- (a) Define what is meant by a full-rank factorization A = BC.
- (b) State the full-rank factorization of A in terms of the QR decomposition with column interchanges. (You may assume that the decomposition is computed in exact arithmetic.)
- (c) Using the QR decomposition of part (b), define bases for the subspaces range(A) and null(A). Prove that the proposed bases satisfy the properties of a subspace basis.
- (d) Using the QR decomposition of part (b), define orthogonal projections onto range(A) and null(A). Prove that the proposed projections satisfy the properties of an orthogonal projection.
- (e) Derive the pseudoinverse of A in terms of the full-rank factorization of part (b).

2. Nonlinear Equations and Optimization

Question 2.1. Let A denote an $n \times n$ matrix, and let s and y be arbitrary n-vectors.

- (a) Find all the eigenvalues of the matrix $I + \gamma u v^T$, where γ is a scalar and u and v are n vectors.
- (b) Consider the Broyden update formula

$$A_{+} = A + \frac{1}{s^{T}s} (y - As)s^{T}.$$

If $\|\cdot\|_F$ denotes the Frobenius norm, show that A_+ minimizes min $\|B-A\|_F$ over all B such that Bs=y.

(c) If A is nonsingular, find a condition on A, s and y that will ensure that A_+ is nonsingular.

Question 2.2. Let $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$ be twice differentiable on an open convex set $\mathcal{D}_0 \subseteq \mathcal{D}$.

- (a) State the first- and second-order necessary conditions for $x^* \in \mathbb{R}^n$ to be an unconstrained minimizer of f.
- (b) State first and second-order sufficient conditions for $x^* \in \mathbb{R}^n$ to be an unconstrained minimizer of f.
- (c) Consider the function $f: \mathbb{R}^3 \to \mathbb{R}$ such that

$$f(x) = (x_3 - 1)^2 \sin x_1 + x_1^2 + x_2^2 - \pi x_1.$$

- (i) Write down the quadratic model q(x) that interpolates f, ∇f and $\nabla^2 f$ at the point $x_0 = (-\pi/2, 0, \pi + 1)^T$.
- (ii) Find the step p_N from x_0 to a stationary point of the quadratic model.
- (iii) Determine if p_N is a descent direction for f at x_0 .
- (iv) Find a descent direction of negative curvature at x_0 (if one exists).

Question 2.3. Given an $n \times n$ symmetric matrix B and vectors y and s, consider the symmetric rank-one formula

$$B_{+} = B + \frac{1}{(y - Bs)^{T}s}(y - Bs)(y - Bs)^{T}.$$

- (a) Let f(x) be a quadratic function with positive-definite Hessian H. Let $s = x_+ x$ and $y = \nabla f(x_+) \nabla f(x)$. If vectors $\bar{s} = \bar{x}_+ \bar{x}$ and $\bar{y} = \nabla f(\bar{x}_+) \nabla f(\bar{x})$ satisfy $B\bar{s} = \bar{y}$, show that $B_+\bar{s} = \bar{y}$.
- (b) Show that if B is symmetric and positive definite, then B_+ will be positive definite if and only if

$$\frac{y^T B^{-1} y - y^T s}{y^T s - s^T B s} > 0.$$

3. Approximation and Numerical ODEs

In this part, we assume that $a, b \in \mathbb{R}$ with a < b. We also denote by \mathcal{P}_n the set of all polynomials of degree $\leq n$ for any integer $n \geq 0$.

Question 3.1.

(a) Let $n \geq 0$ be an integer and T_n the *n*th Chebyshev polynomial of first kind. Let $P \in \mathcal{P}_n$ satisfy that $|P(x)| \leq 1$ for all $x \in [-1, 1]$. Show that

$$|P(y)| \le |T_n(y)| \qquad \forall y \notin [-1, 1].$$

(b) Let \mathbb{F} denote the class of functions $a_0 + a_1 \cos x + a_2 \cos 2x$ with $a_0, a_1, a_2 \in \mathbb{R}$. Find $T \in \mathbb{F}$ such that

$$\int_0^\pi |T(x)-x|^2 dx \leq \int_0^\pi |S(x)-x|^2 dx \qquad \forall S \in \mathbb{F}.$$

Question 3.2.

(a) Use the error formula for the Lagrange interpolation of $f \in C^2[a, b]$ at the two points a and b to derive the error for the trapezoidal numerical integration rule

$$\int_{a}^{b} f(x) dx \approx \frac{1}{2} (b - a) [f(a) + f(b)].$$

(b) Assume that $f \in C^2[a, b]$. Derive an error formula for the composite trapezoidal numerical integration rule

$$\int_{a}^{b} f(x) dx \approx \frac{h}{2} [f(a) + f(b)] + h \sum_{j=1}^{N-1} f(x_{j}).$$

Here $N \ge 1$ is an integer, h = (b-a)/N, and $x_j = a + jh$ (j = 0, ..., N).

(c) Apply the composite trapezoidal numerical integration rule to

$$\int_0^{10} \sin x \, dx.$$

How large N is needed so that the error of the numerical integration is less than 10^{-6} ? (Ignore the round-off error.) Justify your answer.

4

3. Approximation and Numerical ODEs

In this part, we assume that $a,b \in \mathbb{R}$ with a < b. We denote by \mathcal{P} the set of all real polynomials. For any integer $n \geq 0$, we denote by \mathcal{P}_n the set of all real polynomials of degree $\leq n$.

Question 3.1.

(a) Let $f \in C(a,b) \setminus \mathcal{P}$. For any integer $n \geq 0$, denote

$$E_n(f) = \min_{p_n \in \mathcal{T}_n} \max_{a \le x \le b} |f(x) - p_n(x)|.$$

Prove that the sequence $\{E_n(f)\}_{n=0}^{\infty}$ is *strictly* decreasing (i.e., $E_n(f) > E_{n+1}(f)$ for all $n \ge 0$) and converges to 0.

(b) Find the real numbers A. B. and C so that the numerical quadrature

$$\int_{-2}^{2} f(x) \, dx \approx Af(-1) + Bf(0) + Cf(1)$$

has the highest possible degree of precision. What is this highest possible degree of precision?

Question 3.2. Let $x_1^{(n)}, \ldots, x_n^{(n)}$ be the *n* distinct roots of orthogonal polynomials Q_n in $L^2(a,b)$ $(n=1,2,\ldots)$.

(a) For each $n \ge 2$, let $l_1^{(n)}, \ldots, l_n^{(n)}$ be the Lagrange basis polynomials associated with $x_1^{(n)}, \ldots, x_n^{(n)}$. Prove the following:

$$\int_{a}^{b} l_{j}^{(n)}(x) l_{k}^{(n)}(x) dx = 0 \quad \text{if } 1 \le j, k \le n, \text{ and } j \ne k;$$

$$\sum_{k=1}^{n} \int_{a}^{b} \left[l_{k}^{(n)}(x) \right]^{2} dx = b - a.$$

(b) Let $L_{n-1}: C[a,b] \to \mathcal{P}_{n-1}$ be the Lagrange interpolation operator associated with $x_1^{(n)}, \ldots, x_n^{(n)}$. Prove that

$$\lim_{n \to \infty} \int_a^b \left[f(x) - (L_{n-1}f)(x) \right]^2 dx = 0 \qquad \forall f \in C[a, b].$$