Ph.D./Masters Qualifying Examination in Numerical Analysis

Examiners: Philip E. Gill and Michael Holst

9am-12 Noon Wednesday May 25, 2005 5829 AP&M

Name ____

#1.1	20	
#1.2	20	
#1.3	20	
#2.1	20	
#2.2	20	
#2.3	20	
#3.1	20	
#3.2	20	
Total	160	

- Add your name in the box provided and staple this page to your solutions.
- Write your name clearly on every sheet submitted.

2

1. Norms, Condition numbers and Linear Equations

Question 1.1.

(a) Let $\Delta = \operatorname{diag}(\delta_1, \delta_2, \dots, \delta_n)$. Prove that for all $1 \leq p \leq \infty$,

$$\|\Delta\|_p = \max_{1 \le i \le n} |\delta_i|.$$

- (b) Let A and B be any pair of matrices such that the product AB is defined. Prove that $||AB||_F \le ||A||_2 ||B||_F$.
- (c) Let $\|\cdot\|$ and $\|\cdot\|_D$ denote any vector norm and its corresponding dual norm. If $A \in \mathbb{C}^{n \times n}$, let $\|A\|_D$ denote the matrix norm subordinate to $\|\cdot\|_D$. Prove that if $x, y \in \mathbb{C}^n$ then

 $||xy^H|| = ||x|| \, ||y||_D.$

Question 1.2.

- (a) Consider the subtraction x = a b of two real numbers a and b such that $a \neq b$. Suppose that \tilde{a} and \tilde{b} are the result of making a relative perturbation Δa and Δb to a and b. Find the relative error in $\tilde{x} = \tilde{a} \tilde{b}$ as an approximation to x and hence find a condition number for the operation of subtraction. Assume that all calculations are done in exact arithmetic.
- (b) State the standard rounding-error model for floating-point arithmetic. Given three representable numbers a, b and c, compute the backward and forward relative error for the floating-point value \hat{s} of the calculation s=ab+c. Describe a situation in which \hat{s} has large forward error, but small backward error.

Question 1.3.

- (a) Prove that every nonsingular symmetric matrix A can be written in the form $PAP^T = LBL^T$, where P is a permutation, L is unit lower triangular and B is a block-diagonal matrix with diagonal blocks of order at most one or two.
- (b) Briefly describe the diagonal complete pivoting method for finding the factorization $PAP^T = LBL^T$. Show that ||L|| is bounded independently of A.

2. Least-Squares and Eigenvalues

Question 2.1. Let A be an $m \times n$ with rank r. Assume that $b \in \text{range}(A)$.

- (a) Derive necessary and sufficient conditions for x to be the least-length solution of Ax = b and prove that the least-length solution is unique.
- (b) Define an algorithm for computing the general solution of Ax = b using the QR factorization of A^T with column interchanges.
- (c) Use part (b) to define the least-length solution. Verify that your algorithm gives the solution of least length.

Question 2.2. Consider a non-defective matrix $A \in \mathbb{C}^{2\times 2}$ such that

$$A = \left(\begin{array}{cc} a & c \\ 0 & b \end{array}\right).$$

- (a) Find the left and right eigenvectors of A.
- (b) Find the condition number of each of the eigenvalues of A.
- (c) Briefly discuss the situation where A is close to a defective matrix.

Question 2.3. Let $A \in \mathbb{C}^{n \times n}$. Given an approximate eigenpair (λ, u) , describe how you would use one step of inverse iteration to find an improved eigenvector v of A. Hence show that (λ, v) is an exact eigenpair of A + E where E may be chosen to satisfy

$$||E||_F = \frac{||u||_2}{||v||_2}.$$

4

3. Interpolation, Approximation and ODEs

Question 3.1. Consider the function $f(x) = 2x^3 - x^2 + 1$ on [0, 2].

- (a) Construct the (unique) quadratic interpolation polynomial $p_2(x)$ which interpolates f(x) at x = 0, 1, 2.
- (b) Derive a bound on the error $|f(x)-p_2(x)|$ which is valid over the interval [0,2].
- (c) Use Simpson's rule based on $p_2(x)$ to compute an approximation to

$$\mathcal{I}(f) = \int_0^2 f(x) dx,$$

and give an expression for the error in the approximation.

(d) Derive a bound on the error in the finite difference approximation:

$$f'(x) = \left\lceil \frac{f(x+h) - f(x-h)}{2h} \right\rceil.$$

Question 3.2. Consider the problem of best L^p -approximation of a (continuous) function u(x) over the interval [0,1] from a subspace $V \subset L^p([0,1])$: Find $u^* \in V$ such that

$$||u-u^*||_{L^p}=\inf_{v\in V}||u-v||_{L^p},$$

where

$$||u||_{L^p} = \left(\int_0^1 |u|^p \ dx\right)^{1/p}, \ 1 \le p < \infty, \qquad ||u||_{L^\infty} = \sup_{x \in [0,1]} |u(x)|.$$

We wish to find the best L^p -approximation of the specific function $u(x) = x^4$.

- (a) Determine the best L^2 -approximation in the subspace of quadratic functions; i.e., $V = \text{span}\{1, x, x^2\}$, and justify the technique you use.
- (b) Why (specifically) does this problem become tremendously more difficult if we consider the case $p \neq 2$?
- (c) Prove that the decomposition of an element of a Hilbert space using the Projection Theorem is unique.