Numerical Analysis Qualifying Examination

Instructor: Randolph E. Bank

May 21, 2004

Name		
Signature		

25	
25	
25	
25	
25	
25	
150	
	25 25 25 25 25

Question 1. Let A be an $n \times n$ symmetric positive definite matrix. Consider the partitioning

$$A = \begin{pmatrix} \alpha & c^t \\ c & B \end{pmatrix}$$

where α is a scalar and B is $n-1 \times n-1$.

- a. Prove the (Schur complement) matrix $B cc^t/\alpha$ is positive definite.
- b. Using part a, prove by induction that $A = LDL^t$, where L is unit lower triangular, and D is diagonal with positive diagonal elements.

Question 2. Let $x \in \mathbb{R}^n$, and $x \neq 0$.

- a. Find a Householder transformation Q such that $Qx = \sigma e_1$ where σ is a scalar and e_1 the unit vector $e_1^T = (1 \ 0 \ 0 \dots 0)$.
- b. Show how to obtain an orthogonal matrix Q such that $Qx = \sigma e_1$ using a sequence of Givens rotations.

Question 3. Let A and B be symmetric, positive definite $N \times N$ matrices. Assume there exist positive constants α and β such that

$$\alpha \le \frac{x^t A x}{x^t B x} \le \beta$$

for all $x \neq 0$. Consider the solution of Ax = b by the iterative method:

$$B(x_{k+1} - x_k) = \omega(b - Ax_k)$$

where x_0 is given and $\omega = 2/(\alpha + \beta)$.

- a. Derive the error propagator G for this iteration.
- b. Prove:

$$|e_k|_A \leq \left(\frac{\beta-\alpha}{\beta+\alpha}\right)^k |e_0|_A$$

where $e_k = x - x_k$.

Question 4. Let F(x) be a vector function of a vector variable x. Here we study the solution of $F(x^*)=0$ by Newton's method. Assume that F(x) is continuously differentiable with Jacobian matrix $J(x)\equiv \partial F/\partial x$. Assume that J(x) has a uniformly bounded inverse $\|J^{-1}\|\leq \gamma$, and is Lipschitz continuous $\|J(x)-J(y)\|\leq L\|x-y\|$.

- a. Define Newton's method for solving $F(x^*) = 0$.
- p. Let $e_k = x^* x^k$ denote the error. Prove

$$|e_{k+1}| \leq \frac{\gamma L}{2} ||e_k||^2.$$

Hint: you may assume the identity

$$F(y) = F(x) + \int_0^1 J(x + \theta(y - x))(y - x) d\theta$$

Question 5. Let $f \in C^2(I)$, I = [a, b], and let $x_i = a + ih$, $0 \le i \le n$, h = (b - a)/n be a uniform mesh on I. Let S be the space of continuous piecewise linear polynomials with respect to this uniform mesh and let \tilde{f} denote the continuous piecewise linear polynomial interpolant of f.

- a. Compute the dimension of S and define the standard nodal basis functions $\{\phi_i\}$ for S.
- b. Using the Peano Kernel Theorem, prove:

$$||f - \tilde{f}||_{\mathcal{L}^2(I)} \le Ch^2 ||f''||_{\mathcal{L}^2(I)}$$

(You do NOT need to explicitly evaluate the constant C.)

Question 6. Let $y'=f(y), y(0)=y_0$. Assume $|f(w)-f(z)| \leq \mathcal{K}|w-z|$ for all $w,z \in \mathcal{R}$, and the stepsize h is constant. Let $x_k=kh$, and $y_k\approx y(x_k), \ k=0,1,\ldots$ be the approximate solution generated by the Predictor-Corrector scheme based on Euler's method and the Backward Difference method

$$y_k^* = y_{k-1} + hf(y_{k-1})$$

 $y_k = y_{k-1} + hf(y_k)$

- a. Show how y_k and y_k^* can be combined to estimate the local truncation error (L.T.E.) ℓ_k for the Backward Difference method.
- b. Find the region of absolute stability for each method. Note whether each method is A-stable and/or L-stable.
- c. Using a (discrete) Gronwall lemma, prove that, for h sufficiently small,

$$\max_k |y(x_k) - y_k| \le C h \|y''\|_{\infty}$$