Ph.D./Masters Qualifying Examination in Numerical Analysis

Examiners: Philip E. Gill and Michael Holst

9:00am-12:00pm Monday June 4, 2001 5829 AP&M

Name			

#1.1	20	
#1.2	20	
#1.3	20	
#2.1	20	
#2.2	20	
#2.3	20	
#3.1	20	
#3.2	20	
Total	160	

- Add your name in the box provided and staple this page to your solutions.
- Write your name clearly on every sheet submitted.

- Norms, Condition numbers and Linear Equations
 Question 1.1.
- (a) Let $\Delta = \operatorname{diag}(\delta_1, \delta_2, \dots, \delta_n)$. Prove that for all $1 \leq p \leq \infty$,

$$\|\Delta\|_p = \max_{1 \le i \le n} |\delta_i|.$$

- (b) Let A and B be any pair of matrices such that the product AB is defined. Prove that $||AB||_F \le ||A||_2 ||B||_F$.
- (c) Let $\|\cdot\|$ and $\|\cdot\|_D$ denote any vector norm and its corresponding dual norm. If $A \in \mathbb{C}^{n \times n}$, let $\|A\|_D$ denote the matrix norm subordinate to $\|\cdot\|_D$. Prove that if $x, y \in \mathbb{C}^n$ then

 $||xy^H|| = ||x|| \, ||y||_D.$

Question 1.2. Assume $A \in \mathbb{R}^{n \times n}$ is nonsingular. Find a solution E^* of the problem

 $\min_{E \in I\!\!R^{n \times n}} \ \left\{ \frac{\|E\|_2}{\|A\|_2} \mid A + E \ \text{singular} \right\}.$

Give the optimal value of $||E||_2/||A||_2$. Comment on the uniqueness of E.

Question 1.3. Let $A \in \mathbb{R}^{n \times n}$ be symmetric positive definite.

- (a) Prove that if Gaussian elimination without interchanges is applied to A, then the remaining matrix is symmetric positive definite at every step. Hence prove that there exist L and U such that A = LU.
- (b) If A is factorized using Gaussian elimination without interchanges, prove that the growth bound satisfies $\rho_n \leq 1$.

2. Least-Squares and Eigenvalues

Question 2.1. Assume that $A \in \mathbb{R}^{m \times n}$.

- (a) Prove that every $y \in \mathbb{R}^m$ has a unique decomposition $y = y_R + y_N$, with $y_R \in \text{range}(A)$ and $y_N \in \text{null}(A^T)$.
- (b) For any x, let r denote the residual vector b Ax. Prove that x solves the least-squares problem min $||b Ax||_2$ if and only if $Ax = b_R$ and $r = b_N$.
- (c) Assume that A has full column rank.
 - (i) Prove that the least-squares solution is unique.
 - (ii) Describe how you would compute the least-squares solution using the QR decomposition of A.

Question 2.2. Consider a non-defective matrix $A \in \mathbb{C}^{2\times 2}$ such that

$$A = \left(\begin{array}{cc} a & c \\ 0 & b \end{array}\right).$$

- (a) Find the left and right eigenvectors of A.
- (b) Find the condition number of each of the eigenvalues of A.

Question 2.3. Let $A \in \mathbb{C}^{n \times n}$. Given an approximate eigenpair (λ, u) , describe how you would use one step of inverse iteration to find an improved eigenvector v of A. Hence show that (λ, v) is an exact eigenpair of A + E where E may be chosen to satisfy

$$||E||_F = \frac{||u||_2}{||v||_2}.$$

4

3. Interpolation, Approximation and ODEs

Question 3.1. Let $f(x) \in C^{\infty}([a,b])$, let $p_n(x)$ interpolate f(x) at the n+1 points $a = x_0 < x_1 < \cdots < x_n = b$, and denote $\mathcal{I}(f) = \int_a^b f(x) dx$.

(a) Show that the error in the interpolating polynomial can be written as:

$$e_n(x) = f(x) - p_n(x) = f[x_0, x_1, \dots, x_n, x]\psi_n(x),$$

where $\psi_n(x) = \prod_{i=0}^n (x-x_i)$, and where $f[x_0, x_1, \ldots, x_n, x]$ is the divided difference at the n+2 points x_0, x_1, \ldots, x_n, x .

(b) Prove that

$$f[x_0,x_1,\ldots,x_n,x]=\frac{f^{(n+1)}(\xi)}{(n+1)!}, \quad \xi\in(a,b).$$

(c) If $\int_a^b \psi_n(x) dx = 0$, show that

$$\mathcal{I}(e_n) = \mathcal{I}(f) - \mathcal{I}(p_n) = \frac{f^{(n+2)}(\eta)}{(n+2)!} \int_a^b \psi_n(x) dx, \quad \eta \in (a,b).$$

Question 3.2. Consider the problem of best L^2 -approximation of $u \in \mathcal{C}^{\infty}([a,b])$ from a subspace V: Find $u^* \in V$ such that

$$||u-u^*||_{L^2([a,b])} = \inf_{v \in V} ||u-v||_{L^2([a,b])}.$$

(a) Derive a bound on the error in the best L^2 -approximation of the form:

$$||u-u^*||_{L^2([a,b])} \le Ch^3||u^{(3)}||_{L^2([a,b])}, \quad h=b-a,$$

where u^* is chosen from the subspace of quadratic functions V.

(b) Given now the particular function $u(x) = x^3$ over the particular interval [a, b] = [0, 1], determine the best L^2 -approximation from the subspace of quadratic functions, and justify the technique you use.