Numerical Analysis Qualifying Exam
June 5, 2000
Print Name _______
Signature ______

# A1	20	
# A2	30	
# A3	20	
# B1	20	
# B2	20	
# B3	20	
# B4	20	
Subtotal	150	
#C	50	
Total	200	

- A1. (a) Prove $||x||_{\infty} \le ||x||_p \le n^{\frac{1}{p}} ||x||_{\infty}$ for all $x \in \mathbb{R}^n$, $1 \le p \le \infty$.
 - (b) Let $A \in \mathbb{R}^{m \times n}$. Prove: $\frac{1}{\sqrt{n}} \|A\|_{\infty} \le \|A\|_{2} \le \sqrt{m} \|A\|_{\infty},$ $\frac{1}{\sqrt{m}} \|A\|_{1} \le \|A\|_{2} \le \sqrt{n} \|A\|_{1},$ $\|A\|_{2} \le \sqrt{\|A\|_{1} \|A\|_{\infty}}.$
- A2. Let the computed L and U satisfy A + E = LU, where L is unit lower triangular and U is upper triangular. Derive the bound on $E: |E_{ij}| \leq (3+u)u \max(i-1,j)g$, where u is unit roundoff and $g = \max_{i,j,k} |a_{ij}^{(k)}|$.
- A3. Prove that if A is symmetric positive definite, $\max_{i,j} |a_{ij}| = 1$, then $\max_{i,j,k} |a_{ij}^{(k)}| = 1$ under LU (or LDL^T) decomposition.
- B1. Let $A \in \mathbb{C}^{n \times n}$. Prove that A has n orthonormal eigenvectors iff $A^H A = AA^H$.
- B2. Let $A \in \mathbb{R}^{m \times n}$, $m \ge n$. Derive the min 2-norm least squares solution to r = Ax b in terms of the SVD of A.
- B3. Let $A \in \mathbb{R}^{m \times n}$, rank(A) = n, $A^T A x = A^T b$, $(A^T A + F) y = A^T b$, $||F||_2 \le \frac{1}{2} \sigma_n(A)^2$, r = b A x, s = b A y. Show $s r = A (A^T A + F)^{-1} F x$ and $||s r||_2 \le 2 \kappa_2(A) \frac{||F||_2}{||A||_2} ||x||_2$.
- B4. Let $\tilde{A}\begin{bmatrix} y \\ z \end{bmatrix} = \lambda \tilde{B}\begin{bmatrix} y \\ z \end{bmatrix}$, where $\tilde{A} = \begin{bmatrix} 0 & A \\ A^T & 0 \end{bmatrix}$, $\tilde{B} = \begin{bmatrix} B_1 & 0 \\ 0 & B_2 \end{bmatrix}$, $A \in \mathbb{R}^{m \times n}$, $B_1 \in \mathbb{R}^{m \times m}$, $B_2 \in \mathbb{R}^{n \times n}$, $y \in \mathbb{R}^m$, $z \in \mathbb{R}^n$, $m \ge n$. Let B_1, B_2 be symmetric positive definite with Cholesky factors G_1, G_2 . Relate the generalized eigenvalues of (\tilde{A}, \tilde{B}) to the singular values of $M = G_1^{-1}AG_2^{-T}$.

June 5, 2000

NAME	
SIGNATURE	

#1	25	
#2	25	-
Total	50	

Question 1. Let $f \in C^4(I)$, I = [a, b], and let $x_i = a + ih$, $0 \le i \le n$, h = (b-a)/n be a uniform mesh on I. Let S be the space of C^1 piecewise cubic hermite polynomials with respect to this uniform mesh and let \tilde{f} denote the interpolant of f.

- **a.** Compute the dimension of S and define the standard *nodal basis* functions for S.
- b. Using the Peano Kernel Theorem, prove:

$$\parallel f - \tilde{f} \parallel_{\mathcal{L}^2(I)} \leq Ch^4 \parallel f^{(iv)} \parallel_{\mathcal{L}^4(I)}$$

(You do NOT need to explicitly evaluate the constant C.)

Question 2. Let

$$\mathcal{I}(f) = \int_{-1}^{1} f(x) dx$$

and let

$$Q(f) = \sum_{i=1}^{n} w_i f(x_i)$$

denote the n-point Gauss-Legendre quadrature formula (of order 2n). As usual denote by $\phi_i(x)$ the Lagrange nodal basis functions satisfying

$$\phi_i(x_j) = \delta_{ij}$$

- a. Prove $w_i = \mathcal{I}(\phi_i)$.
- b. Prove that the nodes $\{x_i\}$ are the zeroes of the Legendre polynomial of degree n. Hint: let P(x) be a polynomial of degree 2n-1 and $\tilde{P}(x)=\sum P(x_i)\phi_i(x)$ its Lagrange interpolant of degree n. First prove that $Q(P)=\mathcal{I}(\tilde{P})$, and then consider the implications of $\mathcal{I}(P)=\mathcal{I}(\tilde{P})$ for all polynomials of degree 2n-1.