Ph.D./Masters Qualifying Examination in Numerical Analysis Examiners: Philip E. Gill and Bo Li 10am-1pm Wednesday May 30, 2007 5402 AP&M | | #1.1 | 30 | | |------|-------|-----|--| | | #1.2 | 30 | | | | #1.3 | 30 | | | | #2.1 | 30 | | | NAME | #2.2 | 30 | | | | #2.3 | 30 | | | | #3.1 | 30 | | | | #3.2 | 30 | | | | Total | 240 | | - Add your name in the box provided and staple this page to your solutions. - Write your name clearly on every sheet submitted. 1. Norms, Condition Numbers, Linear Equations and Linear Least-Squares In Parts 1 and 2, $\|\cdot\|_p$ refers to the vector p-norm or its subordinate matrix norm. Question 1.1. (a) Given any $x \in \mathbb{C}^m$, find positive constants c_1 and c_2 , independent of x such that $$c_1||x||_2 \le ||x||_{\infty} \le c_2||x||_2.$$ - (b) If $A \in \mathbb{C}^{m \times n}$, prove that $||A||_2 = \sigma_1$, where σ_1 is the largest singular value of A. - (c) Assume that $A \in \mathbb{C}^{m \times n}$ has rank r. Find a scalar σ ($\sigma > 0$), independent of p, such that $$||Ap||_{\infty} \ge \sigma ||p||_2$$ for all $p \in \text{range}(A^T)$. #### Question 1.2. - (a) State the standard rounding-error model for floating-point arithmetic. - (b) Let u denote the unit round-off. Let n be a positive integer such that $n\mathbf{u} < 1$. If $\{\delta_i\}$ is a set of n numbers such that $|\delta_i| \leq \mathbf{u}$, and $\{s_i\}$ are integers such that $s_i = \pm 1$, prove that $$\prod_{i=1}^n (1+\delta_i)^{s_i} = 1+\theta_n,$$ where $|\theta_n| \leq \gamma_n$, with $\gamma_n = n\mathbf{u}/(1-n\mathbf{u})$. (c) Given two *n*-vectors x and y, let \widehat{Z} denote the *computed* version of the rank-one matrix $Z = xy^T$. Apply the standard rounding error model to derive a bound for the component-wise forward error in \widehat{Z} as an approximation to Z. Is the calculation of \widehat{Z} backward stable? Justify your answer. Question 1.3. Assume that $A \in \mathbb{R}^{n \times n}$. (a) Suppose that r (r < n) steps of Householder reduction with column interchanges gives the decomposition $$AP = Q \begin{pmatrix} R_{11} & R_{12} \\ & 0 \end{pmatrix},$$ where Q is orthogonal, P is a permutation and R_{11} is an $r \times r$ nonsingular upper triangle. Define bases for null(A) and range(A^T) in terms of the QR factors above. Verify that the proposed bases satisfy the properties of a basis. (b) Now assume that r steps of Householder reduction give: $$AP = Q \begin{pmatrix} R_{11} & R_{12} \\ & E \end{pmatrix},$$ where Q is orthogonal, P is a permutation and R_{11} is an $r \times r$ nonsingular upper triangle. Show that σ_n , the smallest singular value of A, satisfies $\sigma_n \leq ||E||_2$. Give a *brief* discussion of the implication of this result. ## 2. Nonlinear Equations, Nonlinear Least-Squares and Optimization #### Question 2.1. - (a) Let $F: \mathcal{D} \subseteq \mathbb{R}^n \mapsto \mathbb{R}^m$ be continuously differentiable on the open convex set \mathcal{D} . Compute the Fréchet derivative for the function $f: \mathbb{R}^n \mapsto \mathbb{R}$ such that $f(x) = ||x||_2$. - (b) Given a real $n \times n$ symmetric matrix A, find the Fréchet derivative of the function $G: \mathbb{R}^{n+1} \mapsto \mathbb{R}^{n+1}$ such that $$G(x,\lambda) = \begin{pmatrix} Ax - \lambda x \\ ||x||_2 - 1 \end{pmatrix}.$$ Hence define an iteration of Newton's method for finding an eigenvalue of A and its associated eigenvector. (c) An eigenvalue of a matrix is *simple* if it has algebraic multiplicity 1. If λ^* is a simple eigenvalue of A and x^* is its corresponding normalized eigenvector, prove that $G'(x^*, \lambda^*)$ is nonsingular. Give a *brief* discussion of the implication of this result when finding x^* and λ^* using Newton's method. Question 2.2. Consider the function $f: \mathbb{R}^3 \to \mathbb{R}$ such that $$f(x) = x_1^2 + x_2^2 \cos x_3 - e^{x_2} x_3^2 + 4x_3.$$ - (a) Compute the spectral decomposition of the Hessian matrix of second derivatives at $\bar{x} = (0, 1, 0)^T$. - (b) Compute the Newton direction p^N and modified Newton direction p^M at \bar{x} . Determine if p^N and p^M are descent directions. - (c) Find a direction of negative curvature that is a direction of decrease for f at \bar{x} . #### Question 2.3. - (a) Find all the eigenvalues of the matrix $I + \gamma uv^T$, where γ is a scalar and u and v are n vectors. - (b) Given an $n \times n$ symmetric positive-definite matrix B, and n-vectors y and s, consider the symmetric rank-one quasi-Newton update $$B_{+} = B + \frac{1}{(y - Bs)^{T}s}(y - Bs)(y - Bs)^{T}.$$ (2.1) - (i) Let $f: \mathbb{R}^n \mapsto \mathbb{R}$ be a quadratic function with a symmetric positive-definite Hessian matrix. Let $s = x_+ x$ and $y = \nabla f(x_+) \nabla f(x)$, where $\nabla f(x)$ is the gradient of f evaluated at x. If vectors $\bar{s} = \bar{x}_+ \bar{x}$ and $\bar{y} = \nabla f(\bar{x}_+) \nabla f(\bar{x})$ satisfy $B\bar{s} = \bar{y}$, prove that $B_+\bar{s} = \bar{y}$. - (ii) Find a condition on the vectors y and s that will guarantee the positive definiteness of B_{\perp} . 114-394 #### 4 ### 3. Approximation and Numerical ODEs In this part, we assume that $a, b \in \mathbb{R}$ with a < b. We also denote by \mathcal{P}_n the set of all polynomials of degree $\leq n$ for any integer $n \geq 0$. #### Question 3.1. (a) Prove for any $f \in C[a, b]$ that $$\lim_{n\to\infty}\inf_{q_n\in\mathcal{P}_n}\max_{a\leq x\leq b}|f(x)-q_n(x)|=0,$$ $$\lim_{n\to\infty}\inf_{q_n\in\mathcal{P}_n}\int_a^b [f(x)-q_n(x)]^2]\,dx=0.$$ - (b) Let $p_2 \in \mathcal{P}_2$ be the best uniform approximation in \mathcal{P}_2 of the function $g(x) = x^3 2x^2 + 1$ with respect to the C[-1,1]-norm. What is the value of $p_2(1)$? Justify your answer. - (c) Let Q_0, \ldots, Q_n, \ldots be orthogonal polynomials in $L^2[a, b]$. Fix $n \geq 1$. Prove that Q_n has n simple roots in [a, b]. #### Question 3.2. (a) Find the degree of precision of the numerical quadrature $$\int_{a}^{b} f(x) dx \approx \frac{1}{2} (b-a) [f(a) + f(b)] - \frac{1}{12} (b-a)^{2} [f'(b) - f'(a)] \qquad \forall f \in C^{1}[a,b].$$ (b) Consider a sequence of interpolatory numerical integration formulas $$\int_a^b f(x) dx \approx \sum_{k=1}^n A_k^{(n)} f(x_k^{(n)}), \qquad n = 1, \dots$$ Suppose all the coefficients $A_k^{(n)}$ $(k=1,\cdots,n;\ n=1,\cdots)$ are positive. Prove that $$\lim_{n\to\infty}\sum_{k=1}^n A_k^{(n)}f(x_k^{(n)})=\int_a^b f(x)\,dx\qquad\forall f\in C[a,b].$$