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1 Numerical Linear Algebra (270A)

Question 1.1. Let A 2 Rn⇥n, and let k · k
p

denote the standard l

p norms on Rn, 1  p  1. We
know that the following norm equivalence relations for the l

p-norms on Rn can be shown to hold:

kuk1  kuk2  kuk1 
p
nkuk2  nkuk1, 8u 2 Rn

.

(a) Show the following induced matrix norm and spectral radius relationships:

kAk1 
p
nkAk2  nkAk1, kAk1 

p
nkAk2  nkAk1, ⇢(A)  kAk

p

.

(b) Give a precise mathematical definition of a well-posed problem, and a precise mathematical
definition of the condition of a problem.

(c) Assume A is invertible, and Ax = b and A(x+ �x) = (b+ �b) for some x, b, �x, �b 2 Rn. Show
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p

, 1  p  1.

Question 1.2. Let A 2 Rm⇥n, m � n, and consider the overdetermined system:

Ax = b, where x 2 Rn

, b 2 Rm

.

(a) Formulate the minimization problem that defines the least-squares solution, and rigorously
derive the normal equations from this problem.

(b) Assume A has full rank. Identify the projector P arising in least-squares, show it is idempotent,
and show how to exploit a QR factorization of A in an algorithm for finding the least-squares
solution.

(c) If P 2 Rm⇥m is nonzero and idempotent, show that kPk2 � 1, and that equality holds when
P self-adjoint.

Question 1.3. Let A,B 2 Rn⇥n be SPD matrices.

(a) Show that A defines an inner-product and norm

(u, v)
A

= (Au, v)2, kuk
A

= (u, u)
1/2
A

,

where (u, v)2 is the usual Euclidean 2-inner-product. Now show that BA and E = I�BA are
A-self-adjoint, that they have real eigenvalues, and further that BA is A-positive.

(b) Derive the basic linear method (BLM) for solving Au = f , starting with any u

0 2 Rn:

u

k+1 = (I �BA)uk +Bf, k = 0, 1, 2, . . .

(c) Prove the basic convergence theorem for the BLM: If A and B are SPD, then

⇢(I � ↵BA) = kI � ↵BAk
A

< 1

if and only if ↵ 2 (0, 2/⇢(BA)). Moreover, convergence is optimal when ↵ = 2/[�
min

(BA) +
�

max

(BA)], giving

⇢(I � ↵BA) = kI � ↵BAk
A

= 1� 2

1 + 

A

(BA)
.
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2 Numerical Approximation and Nonlinear Equations (270B)

Question 2.1. Let F : D ⇢ Rn ! Rn be continuously di↵erentiable on an open convex set D.

(a) Rigorously derive the following expansion with integral remainder:

F (x+ h) = F (x) + F

0(x)h+

Z 1

0

�
F

0(x+ ⇠h)� F

0(x)
 
h d⇠,

and then use this expansion to derive Newton’s method for F (x) = 0.

(b) Give a complete algorithm (in pseudocode only) for implementing Newton’s method for the
solving problem: F (x) = 0. Include backtracking line-search (i.e., damping) and allow for
inexact solves of the linearized systems at each step.

(c) Assume that F (x⇤) = 0 for some x

⇤ 2 D, and that F

0(x⇤) is nonsingular. Prove the basic
convergence theorem for Newton’s method: There exists an open neighborhood S ⇢ D con-
taining x

⇤ such that, for any x0 2 S, the Newton iterates are well-defined, remain in S, and
converge to x

⇤ at q-superlinear rate.

Question 2.2. Let f : Rn ! R, c : Rn ! Rm, 0 < m < n, and consider the problem:

min
x2Rn

f(x),

subject to c(x) = 0.

(a) Give the first-order necessary condition for constrained optimality, and clearly specify nonlin-
ear system of equations that must be solved to find a point satisfying the first order necessary
condition.

(b) Derive the jacobian matrix of the nonlinear system of equations from part (a), and use this
jacobian to write down a complete Newton’s method algorithm for solving the nonlinear system
you specified in part (a).

(c) Give the second-order necessary and su�cient condition for constrained optimality.

Question 2.3. Consider the following tabulated data for a function f : R ! R:

x f(x)

0 1

1 3

2 13

(a) Construct the (unique) quadratic interpolation polynomial p2(x) which interpolates the data.

(b) If the function f(x) that generated the above data was actually the cubic polynomial P3(x) =
x

3 + x

2 + 1, derive an error bound for the interval [0, 2].

(c) Use the composite trapezoid rule with two intervals to construct an approximation to:
Z 2

0
f(x) dx,

and give an expression for the error.
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3 Numerical Ordinary Di↵erential Equations (270C)

Question 3.1. We turn to best and near-best approximation in Banach and Hilbert spaces.

(a) Consider first the problem of best L

p-approximation of a function u(x) = x

2 � 2x3 over the
interval [0, 1] from a subspace V ⇢ L

p([0, 1]). Determine the best L

2-approximation in the
subspace of linear functions; i.e., V = span{1, x}. Give an outline of an algorithm that could
find the best Lp approximation when p 6= 2.

(b) Let X be a general Hilbert space, and let U ⇢ X be a subspace. Prove that the orthogonal
projection of u onto Qu 2 U is the unique best approximation of u in U , i.e., that Qu uniquely
satisfies

ku�Quk
X

= inf
w2U

ku� wk
X

.

Rather than the orthogonal projection from part (b), consider now the “Galerkin projection” of u
onto ū = Pu 2 U as defined by the problem:

Find ū 2 U ⇢ X such that A(ū, v̄) = F (v̄), 8v̄ 2 U ⇢ X,

where A(u, v) is a bounded and coercive bilinear form on the Hilbert space X, and F (v) is an
element of the dual space X

⇤ to X.

(c) Prove that ū exists and is unique, and that Cea’s Lemma holds for ū:

ku� ūk
X

 C inf
w2U

ku� wk
X

.

(I.e., this shows that ū is a “quasi-best” approximation to u.)

Question 3.2. Consider the following initial value problem (IVP):

y

0 = f(t, y), a  t  b, y(a) = ↵. (3.1)

(a) Assume for this part only that f(t, y) = t

3
y � 2, a = 0, b = 1, ↵ = 1. Now, rigorously prove

that this problem is well-posed.

Consider now the following class of one-step methods (✓ 2 [0, 1]) for (3.1):

w0 = ↵

w

i+1 = w

i

+ h[✓f(t
i

, w

i

) + (1� ✓)f(t
i+1, wi+1)]

(b) Determine truncation error for this class of methods.

(c) For problem (3.1), what ranges of ✓ make the method consistent, stable, unstable, and/or
conditionally stable? What are the region of stability for the cases ✓ = 0 and ✓ = 1?


