MATH 270ABC: Numerical Analysis

Instructors: Li-Tien Cheng, Randolph Bank, Melvin Leok

Spring Quarter 2020 Qualifying Examination May 28, 2020

	#1	25	
	#2	25	
	#3	25	
	#4	25	
Name	#5	25	
Signature	#6	25	
	#7	25	
	#8	25	
	Total	200	

Question 1. Let

$$A = \frac{1}{10} \begin{bmatrix} -30 & -10 & -20 \\ -60 & -40 & -50 \\ 91 & 70 & 80 \end{bmatrix}, \qquad A^{-1} = \frac{1}{3} \begin{bmatrix} -30 & 60 & 30 \\ -25 & 58 & 30 \\ 56 & -119 & -60 \end{bmatrix},$$

and given $\vec{b}, \vec{\delta b} \in \mathbb{R}^3$, let $\vec{x} \in \mathbb{R}^3$ satisfy the linear system $A\vec{x} = \vec{b}$, and $\vec{x} + \vec{\delta x} \in \mathbb{R}^3$ the perturbed linear system $A(\vec{x} + \vec{\delta x}) = \vec{b} + \vec{\delta b}$.

Find one example of $\vec{b} \neq 0$ and $\delta \vec{b}$ where the relative perturbation satisfies $\frac{||\delta \vec{b}||_1}{||\vec{b}||_1} = \frac{1}{1000}$ and the relative error, $\frac{||\delta \vec{x}||_1}{||\vec{x}||_1}$, is maximized.

Recall: $||x||_1 = \sum_{i=1}^n |x_i|$ and $||A||_1 = \max_{\vec{x} \neq 0} \frac{||A\vec{x}||_1}{||\vec{x}||_1} = \max_{1 \leq j \leq n} \sum_{i=1}^n |a_{ij}|$.

Question 2. Consider the linear system $A\vec{x} = \vec{b}$, with $\vec{x}, \vec{b} \in \mathbb{R}^n$ and $A \in \mathbb{R}^{n \times n}$ satisfying $a_{ii} \neq 0$, for any $i = 1, \ldots, n$. Furthermore, suppose the Jacobi iterative method on $A\vec{x} = \vec{b}$ converges for all initial vectors, and its iteration matrix, B_J , has all real eigenvalues.

Now consider the following iterative method, with parameter $\alpha \in I\!\!R, \alpha \neq 0$, defined by the iteration formula

$$\vec{x}^{(k+1)} = M_{\alpha}^{-1} N_{\alpha} \vec{x}^{(k)} + M_{\alpha}^{-1} \vec{b}$$

where $A = M_{\alpha} - N_{\alpha}$ and $M_{\alpha} = \alpha D \in \mathbb{R}^{n \times n}$, $N_{\alpha} \in \mathbb{R}^{n \times n}$, with $D \in \mathbb{R}^{n \times n}$ the diagonal matrix satisfying $d_{ii} = a_{ii}$ for i = 1, ..., n.

Derive an expression, in terms of eigenvalues of B_J , for the parameter α that maximizes the (asymptotic) rate of convergence of this method.

Question 3. Let an RQ factorization of $A \in \mathbb{R}^{m \times n}$, if it exists, refer to the matrices $R \in \mathbb{R}^{m \times m}$, upper triangular, and $Q \in \mathbb{R}^{m \times n}$, with orthonormal rows, satisfying A = RQ.

- **a.** Given $A \in \mathbb{R}^{3\times 5}$, with linearly independent rows, write down, step-by-step, a method for calculating the RQ factorization of A, and explain the purpose of each step.
- **b.** Suppose $A \in \mathbb{R}^{m \times n}$ has linearly independent rows. Given $\vec{b} \in \mathbb{R}^m$ and an RQ factorization of A, derive an expression, in terms of R, Q, and \vec{b} , for the (least squares solution) $\vec{x} \in \mathbb{R}^n$ with the smallest 2-norm satisfying $A\vec{x} = \vec{b}$.

Question 4. Let $f(x) \in C^2$ be a scalar function of a scalar variable x.

- **a.** Define Newton's method and the Secant method for solving $f(x^*) = 0$.
- **b.** Prove Newton's methods is locally quadratically convergent. Define "locally" in this context, and be sure to carefully list your assumptions.
- c. Prove the Secant method is locally superlinearly convergent with rate $\rho = (1 + \sqrt{5})/2$. Be sure to carefully list your assumptions.

Question 5. In this problem we will analyze the case of continuous piecewise linear interpolation of $f \in C^2[a,b]$ on a mesh of n+1 knots $a=x_0 < x_1 < \cdots < x_n = b$, with $h_i=x_i-x_{i-1}, h=max_ih_i$.

- **a.** Define the interpolant f^* of f on the interval $[x_{i-1}, x_i]$.
- **b.** Derive the Peano Kernel K(x,t) for this approximation on $[x_{i-1},x_i]$ given by

$$K(x,t) = \frac{-1}{h_i} \begin{cases} (x - x_i)(t - x_{i-1}) & x_{i-1} \le x \le t \\ (t - x_i)(x - x_{i-1}) & t \le x \le x_i \end{cases}$$

c. Prove, using the Peano Kernel Theorem,

$$||f - f^*||_{L_{\infty}[a,b]} \le \frac{h^2}{8} ||f''||_{L_{\infty}[a,b]}$$

Question 6. Consider the inner product with weight function $w = 1 - x^2$

$$(f,g) = \int_{-1}^{1} fgw \, dx.$$

a. Compute the 2-point Gaussian Quadrature formula $\mathcal{Q}(f)$ to approximate the integral

$$I(f) = \int_{-1}^{1} f w \, dx.$$

b. Prove an error bound for |I(f) - Q(f)|. Be sure to explicitly evaluate the constant, and state all of your assumptions.

Question 7. Consider the following one-parameter family of explicit, 2-stage Runge–Kutta methods, where $\alpha \neq 0$,

$$Y^{1} = y_{n},$$

$$Y^{2} = y_{n} + \alpha h f(t_{n}, Y^{1}),$$

$$y_{n+1} = y_{n} + \left(1 - \frac{1}{2\alpha}\right) h f(t_{n}, Y^{1}) + \frac{1}{2\alpha} h f(t_{n} + \alpha h, Y^{2}).$$

- **a.** Determine if this Runge–Kutta method is a collocation Runge–Kutta method, for all values of α . Explain how you arrived at your conclusion.
- **b.** Determine the order of accuracy of this method, for all values of α .
- c. Prove that the stability region of this method is independent of α .

Question 8. Consider a linear multistep method of the form,

$$y_{n+4} = y_{n+3} + h \left[b_1 f(t_{n+1}, y_{n+1}) + b_0 f(t_n, y_n) \right].$$

- **a.** The Adams methods are based on interpolation and the fundamental theorem of calculus. By following that approach, derive the values of b_0 and b_1 in the formula above. Does the method you derived have the highest order that can be achieved for a method of that general form? Explain your reasoning.
- **b.** Explain how the root condition for the stability of linear multistep methods is related to the solution theory for linear constant coefficient homogeneous difference equations.
- **c.** Determine if the linear multistep method you derived is convergent, and explain how you arrived at your conclusion.