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e Put your name in the box provided and staple exam to your solutions.

e Write your name clearly on every sheet of paper you submit.
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1 Numerical Linear Algebra (270A)

Question 1.1. Let A € R™*", and let || - ||, denote the standard {? norms on R", 1 < p < co.
(a) Show the following norm equivalence relations for the [P-norms on R™:
[ulloe < flullz < [lully < vV7llullz < nllulle,  VueR",
and then show the following induced matrix norm and spectral radius relationships:

[AllL < VallAl2 < nflAll, [ Alle < VRllAll2 S nflAllee, p(A) < [JA]lp.

(b) Assume A is invertible and use the results from (a) to derive analogous relationships for x,(A).
(c) Assume A is invertible, and Ax = b and A(x + dz) = (b+ db) for some z, b, dx,6b € R™. Show

ox b ob ox
[[z]| < oy )H pr7 Hpr < ey )H Hp7
[l 101l 0]l [lp

1 <p<oo.

Question 1.2. Let A € R™*"™ m > n, and consider the overdetermined system:
Ar =b, wherexz € R",b e R™.

(a) Formulate the minimization problem that defines the least-squares solution, and derive the
normal equations from this problem.

(b) Show that AT A is nonsingular if and only if A has full rank.

(c) Identify the projector P arising in least-squares, and show how to exploit a QR factorization.

Question 1.3. Let A, B € R™*"™ be SPD matrices.

(a) Show that A defines an inner-product and norm

(u,0)4 = (Au,v)e,  Julla = (u,u){?

where (u,v)9 is the usual Euclidean 2-inner-product.

(b) Starting with the Caley-Hamilton Theorem, derive the Conjugate Gradient method for solving
the preconditioned linear system: BAu = Bf. Mathematically justify each step of the deriva-
tion. The derivation will be based around building up an expanding set of Krylov subspaces,
exploiting a 3-term recursion for generating an A-orthogonal bases for these subspaces, and
enforcing minimization of the A-norm of the error at each iteration of the method.
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2 Numerical Approximation and Nonlinear Equations (270B)

Question 2.1. Let F': D C R™ — R"™ be continuously differentiable on an open convex set D.

(a) Derive the following expansion with integral remainder:

1
F(x+h) = F(z)+ F'(z)h + /0 {F'(x +¢h) — F'(z)} h d,

and then use this expansion to derive Newton’s method for F'(z) = 0.

(b) Assume that F(z*) = 0 for some z* € D, and that F’'(z*) is nonsingular. Prove the basic
convergence theorem for Newton’s method: There exists an open neighborhood S C D con-
taining z* such that, for any zg € S, the Newton iterates are well-defined, remain in S, and
converge to x* at g-superlinear rate.

(¢) Show that if the Jacobian F’(z) is Lipschitz in the set S in part (b) for some uniform Lipschitz
constant, then the convergence rate is g-quadratic.

Question 2.2. Let f: R" - R, ¢: R" - R™, 0 < m < n, and consider the problem:
min f(z),
subject to ¢(z) = 0.

Using some basic ideas from linear algebra, prove the main result that leads to the method of
Lagrange Multipliers for this problem: If f and c are differentiable at a feasible point z*, then

Vf(@*)Tp >0, Vpsuch that ¢(a*)p =0,

if and only if there exists a vector A* € R™ such that V f(z*) = ¢/(z*)T\*.

Question 2.3. Consider the following tabulated information about a function f: R — R:
f(x)

1
1
9

| =DM

(a) Construct the (unique) quadratic interpolation polynomial py(z) which interpolates the data.

(b) If the function f(z) that generated the above data was actually the cubic polynomial P3(z) =
223 — 222 + 1, derive an error bound (a fairly “tight” one) for the interval [0, 2].

(c) Use the composite trapezoid rule with two intervals to construct an approximation to:

/ " Ja) dn,

and give an expression for the error.
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3 Numerical Ordinary Differential Equations (270C)

Question 3.1. We consider now the problem of best LP-approximation of a function u(x) = z*

over the interval [0, 1] from a subspace V' C LP(]0, 1]).
(a) Determine the best L?-approximation in the subspace of linear functions; i.e., V = span{1, 2},
and justify the technique you use.

(b) Precisely formulate the best approximation problem in the case p # 2, and propose an algo-
rithm for finding the solution.

(c) Let X be a general Hilbert space, and let U C X be a subspace. Prove that the orthogonal
projection of u onto Pu € U is the best approximation, and that this projection is unique.

Question 3.2. Consider the initial value problem in ordinary differential equations:
y' = f(t,y), te(ab)
y(a) = a.

(a) Derive the Taylor method of order 2 using Taylor expansion of the solution to the ODE.
(b) Derive the Runge-Kutta method of order 2 (by matching terms in the Taylor method).
(c) Consider the multistep method (3-step Adams-Bashford):

wo = @, wp = aq, w2 = (2,

h )
Wit = w; + 5[23,}0(751',101') —16f(ti—1,wi—1) +5f(ti—2,w;—2)], i=2,3,...,N -1

Determine the local truncation error, and examine the stability using the root condition.
Finally, draw a conclusion about the convergence properties of the method.



