Ph.D./Masters Qualifying Examination in Numerical Analysis Examiners: Philip E. Gill and Bo Li 10am to 1pm Tuesday September 8, 2009 2402 AP&M #1.1 30 #1.2 30 #1.3 30 #2.1Name #2.2 30 #2.330 #3.13030 #3.2 Total | 240 - Add your name in the box provided and staple this page to your solutions. - Write your name clearly on every sheet submitted. - Write your answers to the questions in Section 3 on separate sheets so that they may be graded separately. ## 1. Norms, Condition Numbers and Linear Equations #### Question 1.1. - (a) Consider the subtraction x=a-b of two real numbers a and b such that $a\neq b$. Suppose that \widetilde{a} and \widetilde{b} are the result of making a relative perturbation Δa and Δb to a and b. Find the relative error of $\widetilde{x}=\widetilde{a}-\widetilde{b}$ as an approximation to x and hence find a condition number for the operation of subtraction. Assume that all calculations are done in exact arithmetic. - (b) State the standard rounding-error model for floating-point arithmetic. Given three representable numbers a, b and c, compute the backward and forward relative error for the floating-point value \hat{s} of the expression s = ab + c. Describe a situation in which \hat{s} has large forward error, but small backward error. ### Question 1.2. Let A denote a symmetric positive-definite $n \times n$ matrix. (a) Prove the following: $$a_{ii} > 0$$, for all i $|a_{ij}| \le \sqrt{a_{ii}a_{jj}}$, for all i and j $\max_{i,j} |a_{ij}| = \max_{i} a_{ii}$. - (b) Show that if Gaussian elimination without interchanges is applied to A, then the remaining matrix is symmetric positive definite at every step. Hence show that there exists a unit lower-triangular L and upper triangular U such that A = LU - (c) If A is factorized using Gaussian elimination without interchanges, show that the growth factor ρ_n satisfies $\rho_n \leq 1$. Question 1.3. Assume that A is an $m \times n$ matrix with rank k ($k < \min(n_i, n_i)$). - (a) Define what is meant by a full-rank factorization A = BC. - (b) Derive a full-rank factorization of A in terms of the singular value decomposition. (You may assume that the decomposition is computed in exact arithmetic.) - (c) Using the singular-value decomposition of part (b), define bases for the subspaces range(A) and null(A). Prove that the proposed bases satisfy the properties of a subspace basis. - (d) Derive the pseudoinverse of A in terms of the full-rank factorization of part (b). - (e) Using the singular-value decomposition of part (b), define orthogonal projections onto $\operatorname{range}(A)$ and $\operatorname{null}(A)$. Prove that the proposed projections satisfy the properties of an orthogonal projection. ### 2. Nonlinear Equations and Optimization #### Question 2.1. - (a) Derive Newton's method for finding the reciprocal of a given nonzero scalar a. - (b) Determine the exact order of convergence and asymptotic error constant for the method derived in part (a). (Do not attempt to derive the general rateof-convergence result for Newton's method.) Question 2.2. Consider the function $f: \mathbb{R}^3 \to \mathbb{R}$ such that $$f(x) = x_1^2 + x_2^2 \cos x_3 - e^{x_2} x_3^2 + 4x_3.$$ - (a) Compute the spectral decomposition of the Hessian matrix of second derivatives at $\bar{x} = (0, 1, 0)^T$. - (b) Compute the Newton direction p^N and modified Newton direction p^M at \bar{x} . Determine if p^N and p^M are descent directions. - (c) Find a direction of negative curvature that is a direction of decrease for f at \hat{x} . Question 2.3. Let $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable function on an open convex set \mathcal{D} . Let $\nabla f(x)$ denote the gradient of f at any $x \in \mathcal{D}$. If x_k is any point in \mathcal{D} . Consider the quadratic model $$q_k(x) = f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2} (x - x_k)^T B(x - x_k).$$ where B is a given fixed symmetric positive-definite matrix. - (a) Find the vector p_k such that $x = x_k + p_k$ minimizes $q_k(x)$, and show that p_k is a descent direction for f(x) at x_k . - (b) Show that p_k is a solution of the problem $$\underset{\substack{p \in \mathbb{R}^n \\ p \neq 0}}{\text{minimize}} \quad \frac{\nabla f(x)^T p}{\|p\|_E}$$ where $||p||_B = (p^T B p)^{1/2}$. (c) Given the direction p_k of part (a), formulate a back-tracking line search that will guarantee a reduction in f that is no worse than η_k times the reduction predicted by the quadratic model q_k , where η_s is a pre-assigned constant such that $0 < \eta_s < 1$. Show that the quadratic model predicts a decrease in f for all α_k such that $0 < \alpha_k < 2$.