NA Qual: Parts A and B

Sept. 9. 2008

Name ____

#1	30	
#2	35	
#3	50	
#4	35	
A-B	160	
Part C	40	
Total	200	

1. (a) (10) Prove that if $T \in \mathbb{C}^{n \times n}$.

$$T = \begin{bmatrix} T_{11} & T_{12} \\ 0 & T_{22} \end{bmatrix}_q^p.$$

then $\lambda(T) = \lambda(T_{11}) \cup \lambda(T_{22})$.

(b) (20) Prove that if $A \in \mathbb{C}^{n \times n}$, $B \in \mathbb{C}^{p \times p}$, and $X \in \mathbb{C}^{n \times p}$ satisfy AX = XB, rank(X) = p, then there exists a unitary $Q \in \mathbb{C}^{n \times n}$ such that

$$Q^{H}AQ = T = \begin{bmatrix} T_{11} & T_{12} \\ 0 & T_{22} \end{bmatrix}_{n=p}^{p},$$

where $\lambda(T_{11}) = \lambda(A) \cup \lambda(B)$. (Hint: consider QR decomposition of X, and use (a).)

- 2. (a) (25) State and prove the Schur Decomposition Theorem for $A \in \mathbb{C}^{n \times n}$. (Hint: use induction and 1(b).)
 - (b) (10) Use 2(a) to prove that $A \in \mathbb{C}^{n \times n}$ has n orthonormal eigenvectors iff $A^H A = AA^H$.
- 3. (a) (25) State and prove the SVD Existence Theorem for $A \in \mathbb{R}^{m \times n}$.
 - (b) (15) Let $A \in \mathbb{R}^{m \times n}$, $A = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}$, where A_{11} is $k \times k$. Use $S = \begin{bmatrix} A_{11} & A_{12} \\ 0 & 0 \end{bmatrix}$, $m \times n$, to show that $\sigma_{k+1}(A) \leq ||A_{22}||_2$.
 - (c) (10) Let $A \in \mathbb{R}^{m \times n}$, $m \ge n$. Show that there exist an orthogonal Q and a symmetric positive semi-definite P such that A = QP.
- 4. (a) (20) Prove that \hat{x} is a least squares solution to r = Ax b iff \hat{x} satisfies the normal equations, where A is $m \times n$, $m \ge n$.
 - (b) (15) Let A by $n \times n$, symmetric positive definite. Let u_1, \ldots, u_n be an orthonormal basis of eigenvectors corresponding to $\lambda_1, \ldots, \lambda_n$. Let $w = \sum_{j=1}^n \alpha_j u_j$, $S(\mu) \equiv (A + \mu I)^{-1} w$, $\mu > 0$. Show that

$$\frac{d}{d\mu}||S(\mu)||_2 = -\frac{S(\mu)^T (A + \mu I)^{-1} S(\mu)}{||S(\mu)||_2}.$$

Numerical Analysis Qualifying Examination 9:00–12:00, Tuesday, September 9, 2008, AP&M 5829

Part C: Approximation, Interpolation, and Numerical Quadrature. We assume that $a, b \in \mathbb{R}$ with a < b. For any integer $n \geq 0$, we denote by \mathcal{P}_n the set of all polynomials of degree $\leq n$ and by $\overline{\mathcal{P}}_n$ the set of all polynomials in \mathcal{P}_n with leading coefficient 1.

Question 3.1 [20 points]

Let $n \geq 1$ be an integer. Let $Q_k \in \overline{\mathcal{P}}_k$ (k = 0, ..., n) be such that

$$\int_a^b Q_j(x)Q_k(x)\,dx = 0$$

for any indices j and k with $0 \le j < k \le n$. Let $P_n \in \overline{\mathbb{P}}_n$. Prove the following:

(a) The identity

$$P_n(x) = c_0 Q_0(x) + \dots + c_{n-1} Q_{n-1}(x) + Q_n(x)$$

holds true for a unique set of real numbers $c_0, c_1, \ldots, c_{n-1}$. Moreover,

$$\int_{a}^{b} |P_{n}(x)|^{2} dx = c_{0}^{2} \int_{a}^{b} |Q_{0}(x)|^{2} dx + \dots + c_{n-1}^{2} \int_{a}^{b} |Q_{n-1}(x)|^{2} dx + \int_{a}^{b} |Q_{n}(x)|^{2} dx;$$

(b) The inequality

$$\int_{a}^{b} |Q_{n}(x)|^{2} dx \le \int_{a}^{b} |P_{n}(x)|^{2} dx$$

holds true. Moreover, this inequality becomes equality if and only if $P_n = Q_n$.

Question 3.2 [20 points]

- (1) Calculate the Lagrange interpolation polynomial that interpolates the function $f(x) = x^{10}$ at points $x = 0, 1, \dots, 20$. Justify your answer.
- (2) Let $N \ge 1$ be an integer, h = (b-a)/N, and $x_j = a + jh$ (j = 0, ..., N). The composite mid-point quadrature is given by

$$\int_{a}^{b} f(x) dx \approx h \sum_{j=1}^{N} f\left(\frac{x_{j-1} + x_{j}}{2}\right).$$

Suppose $f \in C^2[a,b]$. Prove that there exists $\xi \in [a,b]$ such that

$$\int_{a}^{b} f(x) dx - h \sum_{j=1}^{N} f\left(\frac{x_{j-1} + x_{j}}{2}\right) = \frac{1}{24} (b - a) h^{2} f''(\xi).$$