Ph.D./Masters Qualifying Examination in Numerical Analysis

Examiners: Philip E. Gill and Bo Li

9am-Noon Wednesday September 5, 2007 5402 AP&M

#1.1 30 #1.2 #1.3 **3**0 #2.1 **3**0 Name #2.2 30 #2.3 30 #3.1 **3**0 #3.2 30 240 Total

- Add your name in the box provided and staple this page to your solutions.
- Write your name clearly on every sheet submitted.

2

1. Norms, Condition Numbers and Linear Equations

Question 1.1.

(a) Assume that $A \in \mathbb{C}^{m \times n}$. Define the one-norm $||A||_1$, two-norm $||A||_2$, and infinity norm $||A||_{\infty}$ of A. Show that

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|.$$

(b) Assume that $D \in \mathbb{C}^{n \times n}$ with $D = \operatorname{diag}(d_1, d_2, \ldots, d_n)$. Prove that the matrix p-norm is such that $||D||_p = \max_{1 \le i \le n} |d_i|$ for all $1 \le p \le \infty$.

Question 1.2.

- (a) Consider the subtraction x = a b of two real numbers a and b such that $a \neq b$. Suppose that \tilde{a} and \tilde{b} are the result of making a relative perturbation Δa and Δb to a and b. Find the relative error of $\tilde{x} = \tilde{a} \tilde{b}$ as an approximation to x and hence find a condition number for the operation of subtraction. Assume that all calculations are done in exact arithmetic.
- (b) State the standard rounding-error model for floating-point arithmetic. Given three representable numbers a, b and c, compute the backward and forward relative error for the floating-point value \hat{s} of the expression s=ab+c. Describe a situation in which \hat{s} has large forward error, but small backward error.

Question 1.3. Assume that $A \in \mathbb{R}^{n \times n}$ is symmetric positive definite.

- (a) Prove the following:
 - (i) $a_{ii} > 0$, for all i;
 - (ii) $|a_{ij}| \leq \sqrt{a_{ii}a_{jj}}$, for all i and j; and
 - (iii) $\max_{i,j} |a_{ij}| = \max_i a_{ii}$.
- (b) Prove that A may be factorized as $A = LDL^T$, where L is unit lower-triangular and D is diagonal with positive diagonal elements.

2. Nonlinear Equations and Optimization

Question 2.1.

- (a) Define the Frobenius norm of $A \in \mathbb{C}^{m \times n}$.
- (b) Prove that for any $s \in \mathbb{R}^n$, it holds that $||ss^T||_F = ||s||_2^2$. Hence show that $U^* = (y As)s^T/s^Ts$ solves the optimization problem

$$\min \{ ||U||_F \mid U \in \mathbb{R}^{n \times n}, (A+U)s = y \},$$

where $A \in \mathbb{R}^{n \times n}$, and s and y are given fixed vectors in \mathbb{R}^n .

(c) Give a brief discussion of the significance of part (b) in reference to Broyden's method for multivariate zero finding.

Question 2.2. Let $f: D \subseteq \mathbb{R}^n \to \mathbb{R}$ be a twice continuously differentiable function with gradient vector $\nabla f(x)$.

(a) Consider the quadratic model $q_k(x) = b_k + a_k^T(x - x_k) + \frac{1}{2}(x - x_k)^T B(x - x_k)$, where b_k is a scalar, a_k is an *n*-vector and B is a given fixed symmetric positive-definite matrix. Find the values of a_k and b_k that define a model with function value and gradient equal to $f(x_k)$ and $\nabla f(x_k)$. Find the solution p_k of the quadratic subproblem

$$\underset{p \in \mathbb{R}^n}{\text{minimize}} \ q_k(x_k + p).$$

Prove that p_k is a descent direction for f(x) at x_k .

(b) Prove that p_k is a solution of the problem

$$\underset{\substack{p \in \mathbb{R}^n \\ p \neq 0}}{\text{minimize}} \ \frac{p^T \nabla f(x_k)}{\|p\|_B},$$

where $||p||_B = (p^T B p)^{1/2}$. Briefly discuss the significance of this result.

Question 2.3. Let $F: \mathcal{D} \subseteq \mathbb{R}^n \mapsto \mathbb{R}^m$ be a continuously differentiable function on an open convex set \mathcal{D} . We seek a zero of F by minimizing the scalar-valued function $f(x) = ||F(x)||_2$. Let x_k and p_k denote vectors in \mathbb{R}^n such that $x_k \in \mathcal{D}$ and $p_k \neq 0$.

- (a) If $F(x_k) \neq 0$ and φ is the univariate function $\varphi(\alpha) = ||F(x_k + \alpha p_k)||_2$, find an expression for the directional derivative $\varphi'(\alpha)$ in terms of $F(x_k + \alpha p_k)$ and $F'(x_k + \alpha p_k)$.
- (b) If p_k is the least-length solution of $\min_p ||F(x_k) + F'(x_k)p||_2$, derive the conditions under which p_k is a descent direction for $||F||_2$ at x_k .
- (c) Derive the termination criterion for a backtracking line search to be used in conjunction with the direction p_k defined in part (b). Derive the backtracking termination criterion for the special case where $F: \mathcal{D} \subseteq \mathbb{R}^n \mapsto \mathbb{R}^n$ and $\operatorname{rank}(F') = n$.

3. Approximation and Numerical ODEs

In this part, we assume that $a, b \in \mathbb{R}$ with a < b. We also denote by \mathcal{P}_n the set of all polynomials of degree $\leq n$ for an integer $n \geq 0$.

Question 3.1.

(a) Let $f \in C^1[a,b]$ and $\varepsilon > 0$. Prove that there exists a polynomial p such that

$$\max_{a \le x \le b} |f(x) - p(x)| < \varepsilon$$
 and $\max_{a \le x \le b} |f'(x) - p'(x)| < \varepsilon$.

(b) Find the least-squares approximation in \mathcal{P}_1 of the function $f(x) = x^4$ in $L^2[-1,1]$.

Question 3.2.

(a) Let $k \geq 1$ be an integer. Suppose $p_k, q_k \in \mathcal{P}_k$ are the Lagrange interpolation polynomials that interpolate f_0, \ldots, f_k at x_0, \ldots, x_k and f_1, \ldots, f_{k+1} at x_1, \ldots, x_{k+1} , respectively. Define

$$\tau_{k+1}(x) = \frac{(x-x_0)q_k(x) - (x-x_{k+1})p_k(x)}{x_{k+1} - x_0}.$$

Prove that $r_{k+1}(x)$ is the Lagrange interpolation polynomial that interpolates f_0, \ldots, f_k , and f_{k+1} at x_0, \ldots, x_k , and x_{k+1} .

(b) The trapezoidal numerical integration rule is given by

$$\int_a^b f(x) dx \approx \frac{1}{2} (b-a) \left[f(a) + f(b) \right].$$

Let $f \in C^2[a, b]$.

Prove that there exists $\xi \in (a, b)$ such that

$$\int_a^b f(x) dx = \frac{1}{2} (b-a) \left[f(a) + f(b) \right] - \frac{1}{12} (b-a)^3 f''(\xi).$$

Let $N \ge 1$ be an integer, h = (b-a)/N, and $x_k = a+kh$, k = 0, ..., N. Prove that there exists $\eta \in (a, b)$ such that

$$\int_a^b f(x) dx = \left\{ \frac{h}{2} \left[f(a) + f(b) \right] + h \sum_{k=1}^{N-1} f(x_k) \right\} - \frac{(b-a)f''(\eta)}{12} h^2.$$