Ph.D./Masters Qualifying Examination in Numerical Analysis

Examiners: Li-Tien Cheng and Philip E. Gill

1:00—4:00pm Wednesday September 10, 2003 7421 AP&M

Name		#1.1	20	
		#1.2	20	
		#1.3	20	
		#2.1	20	
		#2.2	20	
		#2.3	20	
		#3.1	20	
		#3.2	20	
		Total	160	

- Add your name in the box provided and staple this page to your solutions.
- Write your name clearly on every sheet submitted.

2

1. Norms, Condition numbers and Linear Equations

Question 1.1. Assume that $A \in \mathbb{C}^{m \times n}$.

(a) Define the one-norm $||A||_1$ and infinity norm $||A||_{\infty}$ of A. Show that

$$||A||_{\infty} = \max_{1 \leq i \leq m} \sum_{j=1}^{n} |a_{ij}|.$$

- (b) Establish the following identities between the one-norm and infinity-norm:
 - (i) $||A||_1 \leq m ||A||_{\infty}$.
 - (ii) $\frac{1}{n} ||A||_{\infty} \leq ||A||_{1}$.

Question 1.2.

- (a) State the standard rounding-error model for floating-point arithmetic.
- (b) Let u denote the unit roundoff, and assume that $n\mathbf{u} < 1$ for the positive integer n. If $\{\delta_i\}$ are n scalars such that $|\delta_i| \leq \mathbf{u}$, prove that

$$\prod_{i=1}^n (1+\delta_i) = 1+ heta_n, \quad ext{where} \quad | heta_n| \leq \gamma_n,$$

with $\gamma_n = n\mathbf{u}/(1-n\mathbf{u})$.

(c) Let $\{x_i\}$ denote any set of n representable real numbers. Perform a forward and backward rounding-error analysis for the floating-point computation of $\sum_{i=1}^{n} |x_i|$. Comment on the forward and backward stability of this calculation.

Question 1.3. Suppose that Gaussian elimination without interchanges succeeds on a symmetric matrix A. Prove that the remaining matrix must be symmetric at each step. Hence show that if A is symmetric positive definite, then Gaussian elimination without interchanges gives $\rho_n \leq 1$.

2. Least-Squares and Eigenvalues

Question 2.1. Let A be any nonzero $m \times n$ matrix of rank r.

- (a) State the definition of a full-rank factorization of A.
- (b) Suppose that A has a full-rank factorization A = FG, where F is $m \times r$ and G is $r \times n$. Show that $A^{\dagger} = G^{\dagger}F^{\dagger}$.
- (c) Use the result of part (a) to derive the least-length least-squares solution of $Ax \approx b$ using the singular-value decomposition.

Question 2.2. Consider a non-defective matrix $A \in \mathbb{C}^{2\times 2}$ such that

$$A = \left(\begin{array}{cc} a & c \\ 0 & b \end{array} \right).$$

- (a) Find the left and right eigenvectors of A.
- (b) Find the condition number of each of the eigenvalues of A.

Question 2.3.

- (a) Given any nonzero vector $u \in \mathbb{C}^n$, show that the matrix $I uu^H/\beta$ with $\beta = \frac{1}{2}u^Hu$ is Hermitian and unitary.
- (b) Use part (a) to show that for any vector $x \in \mathbb{C}^n$, there exists a unitary matrix H such that $Hx = \gamma e_1$, where e_1 is the first column of the identity and $|\gamma| = ||x||_2$. Hence show that if $||x||_2 = 1$, then there exists a unitary matrix with x as its first column
- (c) Let x denote an approximate eigenvector of A with $||x||_2 = 1$. If Q is unitary with x as its first column, show that if the product Q^HAQ is partitioned as

$$Q^H A Q = \left(egin{array}{cc} x^H A x & b^H \ e & C \end{array}
ight),$$

then $||e||_2 = ||Ax - (x^H Ax)x||_2 \le ||Ax - \sigma x||_2$ for all σ . Briefly discuss the relevance of this inequality to the accuracy of the Rayleigh quotient as an estimate of an eigenvalue associated with an approximate eigenpair (λ, x) .

4

3. Interpolation, Approximation and ODEs

Question 3.1. Consider the quadrature formula

$$\int_{-1}^{1} f(x) \ dx \approx \frac{5}{9} f\left(-\sqrt{\frac{3}{5}}\right) + \frac{8}{9} f(0) + \frac{5}{9} f\left(\sqrt{\frac{3}{5}}\right).$$

- (a) Verify that it is exact for all polynomials of degree 5 or less.
- (b) Is it a Gaussian quadrature? Why or why not?

Question 3.2. Let $\{\phi_k, k = 0, 1, ..., \infty\}$ be an orthogonal set of polynomials in the interval [a, b], where ϕ_k has degree k.

- (a) Given $n \ge 0$, show $\{\phi_0, \phi_1, \dots, \phi_n\}$ forms a basis for the set of polynomials P_n of degree less than or equal to n in [a, b].
- (b) Given $n \ge 1$, show $\phi_{n+1} = (A_{n+1}x + B_{n+1})\phi_n + C_{n+1}\phi_{n-1}$ holds in [a, b], for some constants A_{n+1} , B_{n+1} , and C_{n+1} . Hint: Consider subtracting ϕ_{n+1} by a certain constant multiple of $x\phi_n$ and using part (a).