Numerical Analysis Qualifying Exam September 12, 2000

Name _____

# A1	25	
# A2	10	
# A3	25	
# A4	25	
# B1	15	
# B2	30	
# B3	20	
Subtotal	150	
#C	50	
Total	200	

- (25) A1. State and prove the SVD Existence Theorem (for real $m \times n$ matrices).
- (10) A2. Def: ||| ||| is a subordinate matrix norm \equiv there exists a vector norm || || such that $|||A||| = \max_{x\neq 0} \frac{||Ax||}{||x||}$ for all A.
 - (a) Prove that if ||| ||| is a subordinate matrix norm then |||I||| = 1.
 - (b) Show that the Frobenius norm is not subordinate to any vector norm.
- (25) A3. (a) Let A be $m \times n, m > n, B = [A|z]$. Show that $\sigma_1(B) \geq \sigma_1(A)$ and $\sigma_{n+1}(B) \leq \sigma_n(A)$.
 - (b) Let A be $m \times n, m \ge n, C = \begin{bmatrix} A \\ v^T \end{bmatrix}$. Show that $\sigma_n(C) \ge \sigma_n(A)$ and $\sigma_1(A) \le \sigma_1(C) \le \sqrt{\sigma_1(A)^2 + v^T v}$.
- (25) A4. Let the computed L and U satisfy A + E = LU, where L is unit lower triangular and U is upper triangular. Derive the bound on $E : |E_{ij}| \leq (3+u)u \max(i-1,j)g$, where u is unit roundoff and $g = \max_{i,j,k} |a_{ij}^{(k)}|$.
- (15) B1. Use Gershgorin's Theorem to prove that a real symmetric diagonally dominant matrix with positive diagonal elements is positive definite.
- (30) B2. (a) Let r = Ax b, A is $m \times n$, $m \ge n$, rank(A) = k < n. Derive the min 2-norm least squares solution of r = Ax b in terms of the SVD of A.
 - (b) Let Ax = b, A is $m \times n$, m < n, rank(A, b) = rank(A) = k. Derive the min 2-norm solution to Ax = b in terms of the SVD of A.
- (20) B3. Show that if the single shift QR method converges, then the convergence is:
 - (a) quadratic for general matrices,
 - (b) cubic for symmetric matrices.

Numerical Analysis Qualifying Examination

Part C

September 12, 2000

Name	
SIGNATURE	

#1	25	
#2	25	
Total	50	

Question 1. Consider the initial value problem:

$$y' = f(y)$$
$$y(x_0) = y_0$$

and the following three methods for approximating its solution:

$$y_{n+1} = y_n + hf(y_n)$$

 $y_{n+1} = y_n + hf(y_{n+1})$
 $y_{n+1} = y_{n-1} + 2hf(y_n)$

- a. For each method, compute the local truncation error and the resulting order of approximation.
- b. For each method, compute the region of absolute stability.

Question 2. Let

$$\mathcal{I}(f) = \int_{-1}^{1} f(x) dx$$

Consider the two point Gauss-Legendre quadrature formula of the form

$$Q(f) = w_1 f(x_1) + w_2 f(x_2) \tag{1}$$

- a. Find the knots x_1 and x_2 and the weights w_1 and w_2 for the Gauss-Legendre formula (1).
- b. Derive an error estimate for $\mathcal{E}(f) = |\mathcal{I}(f) \mathcal{Q}(f)|$. Be sure to explicitly evaluate the constant.
- c. Derive the composite formula for approximating

$$\int_a^b f(x)dx$$

on a uniform mesh of size h (note here the reference interval is [-1,1]).

d. Write down an expression for the error in the composite formula. (No proof needed.)