Department of Mathematics MA/PhD Qualifying Examination in Applied Algebra: Part I

Examiners: Philip Gill and Cristian Popescu

10:00-11:15am, AP&M 7421 Wednesday May 31, 2006

Name		#1.1	20	
		#1.2	20	
		#2.1	20	
		#2.2	20	
		Total	80	

- Do all problems.
- Add your name in the space provided and staple this page to your solutions for Section #1.
- Start your solutions for the questions in Section #2 on a fresh page.
- Write your name clearly on every sheet submitted.

1. Linear algebra

Question 1.1.

- (a) Consider λ_i , $\lambda_j \in \text{eig}(A)$ such that $\lambda_i \neq \lambda_j$. Let (x_i, y_i) and (x_j, y_j) denote the right and left eigenvectors of A associated with λ_i and λ_j . Show that $y_i^*x_j = 0$.
- (b) Let x denote an eigenvector of A associated with an eigenvalue λ . Prove that if λ has a left-eigenvector y such that $y^*x = 0$, then $am(\lambda) > 1$.

Question 1.2. Given $A \in M_{m,n}$ with $m \geq n$, prove that there exists a unique $U \in M_{m,n}$ with orthonormal columns, and a unique Hermitian positive semidefinite $H \in M_n$ such that A = UH.

2. Group Theory

Question 2.1. Let p be a prime number.

- (a) Show that the order of $\widehat{1+p}$ in $(\mathbb{Z}/p^2\mathbb{Z})^{\times}$ is equal to p.
- (b) Use (a) above to construct a non-abelian group of order p^3 .
- (c) Describe the non-abelian group you have constructed in (b) above via generators and relations.

Note. As usual, $(\mathbb{Z}/p^2\mathbb{Z})^{\times}$ denotes the multiplicative group consisting of all the congruence classes $\widehat{x} \in \mathbb{Z}/p^2\mathbb{Z}$, such that $\gcd(x,p) = 1$.

Question 2.2. Let G be a group. Let $r \geq 2$ be an integer. Assume that G contains a non-trivial subgroup H of index [G:H]=r. Prove the following.

- (a) If G is simple, then G is finite and |G| divides r!.
- (b) If $r \in \{2, 3, 4\}$, then G cannot be simple.
- (c) For all integers $r \geq 5$, there exist simple groups G which contain non-trivial subgroups H of index [G:H] = r.