Applied Algebra Qualifying Exam Spring 2015

Instructions: Do all of Problems 1-4. Choose two among Problems 5-7 to do. (If you attempt all three of Problems 5-7, only the best two will count towards your score on this exam.) All problems are weighted equally. Good luck!

Problem 1: Let $D_5 = \langle r, s : s^2 = r^5 = 1, srs = r^{-1} \rangle$ denote the group of symmetries of a regular pentagon. Find the character table of D_5 .

Problem 2:

- (1) Write down the character table of the product of symmetric groups $\mathfrak{S}_3 \times \mathfrak{S}_2$.
- (2) Let $S^{(2,2,1)}$ be the irreducible representation of \mathfrak{S}_5 indexed by the partition $(2,2,1) \vdash 5$. Determine the decomposition of the restriction $S^{(2,2,1)} \downarrow_{\mathfrak{S}_3 \times \mathfrak{S}_2}$ into irreducible $\mathfrak{S}_3 \times \mathfrak{S}_2$ -representations.

Problem 3:

- (1) Write down the character table of the symmetric group \mathfrak{S}_4 .
- (2) For $\lambda \vdash 4$, let S^{λ} denote the corresponding irreducible representation of \mathfrak{S}_4 . Endow the tensor product $S^{(3,1)} \otimes S^{(2,2)} \otimes S^{(2,1,1)}$ with a \mathfrak{S}_4 -module structure by

$$\sigma.(u \otimes v \otimes w) := (\sigma.u) \otimes (\sigma.v) \otimes (\sigma.w)$$

for $\sigma \in \mathfrak{S}_4, u \in S^{(3,1)}, v \in S^{(2,2)}$, and $w \in S^{(2,1,1)}$. (This is the *Kronecker product*.) Find the decomposition of $S^{(3,1)} \otimes S^{(2,2)} \otimes S^{(2,1,1)}$ into irreducible \mathfrak{S}_4 -modules.

(3) Describe the structure (as a product of matrix algebras over \mathbb{C}) of the algebra of \mathfrak{S}_4 -endomorphisms $\operatorname{End}_{\mathfrak{S}_4}(S^{(3,1)}\otimes S^{(2,2)}\otimes S^{(2,1,1)})$.

Problem 4: Let G be a finite group and let $X : G \to GL_n(\mathbb{C})$ be a complex matrix representation of G. For any $g \in G$, prove that the matrix X(g) is diagonalizable. Is this still true if the group G is infinite?

Problem 5: Let \mathbb{K} be an algebraically closed field, let \mathbb{K}^n be affine n-space over \mathbb{K} , and consider the polynomial ring $\mathbb{K}[x_1,\ldots,x_n]$.

- (1) Suppose that $I \subseteq \mathbb{K}[x_1, \dots, x_n]$ is an ideal such that $\mathbf{V}(I) \subseteq \mathbb{K}^n$ is a finite set. Prove that $\mathbb{K}[x_1, \dots, x_n]/I$ is a finite-dimensional \mathbb{K} -vector space.
- (2) Let \mathbb{F} be a field which is *not* algebraically closed. Prove that there exists an ideal $I \subseteq \mathbb{F}[x,y]$ such that $\mathbf{V}(I) = \emptyset$ but $\mathbb{F}[x,y]/I$ is an infinite-dimensional \mathbb{F} -vector space.

Problem 6: Consider the matrix $A \in GL_3(\mathbb{C})$ given by

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

Let G be the order 3 cyclic group generated by A.

(1) Use Molien's Theorem to find the Hilbert series of the invariant ring $\mathbb{C}[x,y,z]^G$.

(2) Find two finite subgroups $H, K \leq GL_3(\mathbb{C})$ such that H and K are isomorphic as abstract groups but the invariant rings $\mathbb{C}[x,y,z]^H$ and $\mathbb{C}[x,y,z]^K$ are not isomorphic as graded algebras. (Hint: There is an example where |H| = |K| = 2.)

Problem 7: Let $I \subseteq \mathbb{C}[x,y]$ be the ideal given by $I = \langle y^2 + xy, xy^2 + x^2y + x^2 \rangle$.

- (1) Find the reduced Gröbner basis for I with respect to the lexicographic order where y > x.
- (2) Find the reduced Gröbner basis basis for the ideal $I \cap \mathbb{C}[x]$.
- (3) Find a \mathbb{C} -linear basis for the \mathbb{C} -vector space $\mathbb{C}[x,y]/I$.