Name:	

"[n]" means the problem is worth n points.

- 1. Let p be a prime, and G a group of order p^3 .
- a [20]. Prove that G has a normal subgroup of order p^2 .

b. Assume that G has a cyclic normal subgroup N of order p^2 , generated by some element n. Let g be an element not in N.

i [5]. If the order |g| of g is p^3 , classify the possible G up to isomorphism.

ii [15]. If the order |g| of g is p, classify the possible G up to isomorphism.

(Incidentally, there exist groups of neither type, such as the group of 3×3 upper triangular matrices over \mathbb{F}_p with 1s on the diagonal.)

- 2. Let I,J be two ideals in a commutative ring R (with unit), a [20]. Define $K=\{r:rJ\leq I\}.$ Show that K is an ideal.

b [10]. If R is a principal ideal domain, so $I=\langle i\rangle,\ J=\langle j\rangle,$ give a formula for a generator k of K.

3 [25]. Describe, up to isomorphism, all the $\mathbb{R}[x]$ -module structures one might put on a 3-dimensional real vector space (extending the fixed \mathbb{R} -action).

4. Let $\mathbb{C}[x]/\langle x^n \rangle$ denote the evident $\mathbb{C}[x]$ (bi)module, and let $m,n \in \mathbb{N}$, a [15]. Show that there exist d_1,\ldots,d_k such that

$$\mathbb{C}[x]/\langle x^n\rangle \otimes_{\mathbb{C}[x]} \mathbb{C}[x]/\langle x^m\rangle \cong \bigoplus_{i=1}^k \mathbb{C}[x]/\langle x^{d_i}\rangle.$$

b [20]. Determine the $\{d_i\}$ in terms of m,n. Hint: figure out the action of x on the obvious C-basis.

5 [30]. Recall that a "perfect" field of characteristic p is one for which the Frobenius map $Fr:x \mapsto x^p$ is onto.

Let K be a perfect field, and F an algebraic extension. Show that F is perfect.