Name: ______
PID: _____

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
Total:	70	

- 1. Write your name on the front page of your exam.
- 2. Read each question carefully, and answer each question completely.
- 3. Write your solutions clearly in the exam sheet.
- 4. Show all of your work; no credit will be given for unsupported answers.
- 5. You may use the result of one part of the problem in the proof of a later part, even you do not complete the earlier part.

1. (10 points) Suppose p < q are odd primes and G is a group of order 2pq. Prove that G has two normal subgroups $N_1 \subseteq N_2$ such that $|N_2| = pq$ and $|N_1| = q$.

- 2. Suppose G is a non-trivial finite solvable group, |G| = mn, and gcd(m, n) = 1.
 - (a) (5 points) Suppose Q is a minimal normal subgroup of G; that means Q a normal subgroup, $Q \neq \{1\}$ and no proper non-trivial subgroup of Q is normal in G. Prove that Q is an abelian p-group for some prime p.

(b) (5 points) Prove that G has a subgroup of order m. (**Hint**. Use induction and make use of G/Q.)

- 3. Suppose p is a prime and n is a positive integer. An element $x \in \operatorname{GL}_n(\mathbb{F}_p)$ is called a *p*-element if its order is a power of p.
 - (a) (3 points) Prove that x is a p-element if and only if x 1 is nilpotent.

(b) (7 points) Prove that the number of conjugacy classes of $\operatorname{GL}_n(\mathbb{F}_p)$ that consists of *p*-elements is the same as the number of conjugacy classes of the symmetric group S_n .

4. Suppose M is a flat A-module.

(a) (3 points) Prove that, for every ideal I of A, $I \otimes_A M \simeq IM$ with an isomorphism which sends $a \otimes x$ to ax for every $a \in I$ and $x \in M$.

(b) (7 points) For $x_1, \ldots, x_n \in M$, suppose

$$a_1x_1 + \dots + a_nx_n = 0.$$

Let $I := \langle a_1, \ldots, a_n \rangle$ be the ideal generated by a_i 's. Let

$$f: A^n \to I, \quad f(b_1, \dots, b_n) := a_1 b_1 + \dots + a_n b_n,$$

 $K := \ker f$, and so

$$0 \to K \to A^n \to I \to 0 \tag{1}$$

is a short exact sequence of A-modules. Prove that there exist $\mathbf{k}_j := (b_{1j}, \ldots, b_{nj}) \in K$ and $y_j \in M$ for $j = 1, \ldots, m$ such that

$$b_{i1}y_1 + \dots + b_{im}y_m = x_i$$

for every $i = 1, \ldots, n$; that means

$$\mathbf{k}_1 y_1 + \dots + \mathbf{k}_m y_m = (x_1, \dots, x_n).$$

(**Hint**. Use flatness and the SES in (1))

5. (10 points) Suppose A is a unital commutative ring and Spec(A) is the set of all the prime ideals of A. For an A-module M and $\mathfrak{p} \in \text{Spec}(A)$, let $M_{\mathfrak{p}}$ be the localization of M at \mathfrak{p} . Let

$$\operatorname{supp} M := \{ \mathfrak{p} \in \operatorname{Spec}(A) \mid M_{\mathfrak{p}} \neq 0 \}.$$

Prove that for a finitely generated A-module M,

 $\operatorname{supp} M = \{ \mathfrak{p} \in \operatorname{Spec}(A) \mid \operatorname{ann}(M) \subseteq \mathfrak{p} \},\$

where $\operatorname{ann}(M)$ is the annihilator of M.

6. (10 points) Suppose p is a prime. Prove that $x^p - x + 1$ is irreducible in $\mathbb{F}_p[x]$.

- 7. Suppose F is a field of characteristic zero, $f \in F[x]$ is monic and irreducible, and E is a splitting field of f over F. Let $X := \{\alpha \in E \mid f(\alpha) = 0\}.$
 - (a) (3 points) Suppose $m \in \mathbb{N}$ and $\alpha \in X$. Let $g(x) := m_{\alpha^m, F}(x)$ be the minimal polynomial of α^m over F. Prove that $\{\beta^m \mid \beta \in X\}$ is the set of zeros of g(x) in E.

(b) (4 points) Suppose there exist $\alpha \in E$ and $r \in F$ such that $\alpha, r\alpha \in X$. Prove that

$$\ell_r: X \to X, \quad \ell_r(\beta) = r\beta$$

is well-defined. Deduce that r is a root of unity.

(c) (3 points) Suppose $\alpha, r\alpha \in X, r \in F$, and the multiplicative order of r is m. Prove that

 $m_{\alpha,F}(x) = m_{\alpha^m,F}(x^m);$ that means $f(x) = g(x^m).$

(Empty page)

Page 11

(Empty page)

Good Luck!

(Empty page)