Name:			
PID: _			

Question	Points	Score
1	10	
2	10	
3	15	
4	10	
5	15	
6	15	
7	25	
Total:	100	

- 1. Write your Name and PID, on the front page of your exam.
- 2. Read each question carefully, and answer each question completely.
- 3. Write your solutions clearly in the exam sheet.
- 4. Show all of your work; no credit will be given for unsupported answers.
- 5. You may use the result of one part of the problem in the proof of a later part, even if you do not complete the earlier part.
- 6. You may use major theorems *proved* in class, but not if the whole point of the problem is reproduce the proof of such a result. Similarly, quote the result of a homework exercise only if the result of the exercise is a fundamental fact and reproducing the result of the exercise is not the main point of the problem.

1. (10 points) Suppose p < q are two odd primes. Suppose G is a group of order 2pq. Prove that G has normal subgroups N_1 and N_2 such that $|N_1| = pq$, $|N_2| = q$, and $N_2 \subseteq N_1$.

- 2. Suppose p is a prime which is at most n, and F is a field of characteristic p. Suppose $g \in \mathrm{GL}_n(F)$ and $g^{p^m} = I$ for some positive integer m.
 - (a) (5 points) Prove that g-I is a nilpotent matrix.

(b) (5 points) Prove that $g^p = I$.

- 3. Suppose A is a commutative unital ring, and M is an A-module.
 - (a) (8 points) Prove that, if $M_{\mathfrak{m}}=0$ for any maximal ideal \mathfrak{m} of A, then M=0.

(b) (7 points) Prove that if $M_{\mathfrak{m}}$ is a flat $A_{\mathfrak{m}}$ -module for any maximal ideal \mathfrak{m} of A, then M is a flat module. (You do not need to prove that localization is an exact functor.)

4. (10 points) Let A be a unital commutative ring. Suppose P and Q are two projective A-modules. Prove that $P\otimes_A Q$ is a projective A-module.

- 5. Let $A:=\{a_0+a_2T^2+a_3T^3+\cdots+a_nT^n|\ n=0,2,3,\ldots;a_0,a_2,\ldots,a_n\in\mathbb{Z}\}$ (no degree one term) be a subring of the ring $\mathbb{Z}[T]$ of polynomials.
 - (a) (2 points) Find the field of fractions of A.

(b) (3 points) Show that T is integral over A; that means it is a zero of a monic polynomial in A[x].

(c) (5 points) Is A a UFD?

(d) (5 points) Is there f(T) such that $A = \mathbb{Z}[f(T)]$?

- 6. Suppose p is prime and $q=p^n$ for some positive integer n. Let \mathbb{F}_q be a finite field of order q and $\overline{\mathbb{F}}_q$ be an algebraic closure of \mathbb{F}_q . Suppose $\alpha \in \overline{\mathbb{F}}_q$ is a zero of $x^q x + 1$.
 - (a) (5 points) Prove that $\alpha^{q^i} = \alpha i$ for any positive integer i.

(b) (5 points) Prove that $|\mathrm{Gal}(\mathbb{F}_q[\alpha]/\mathbb{F}_q)| = p$.

(c) (5 points) Prove that any irreducible factor of $x^q-x+1\in\mathbb{F}_q[x]$ has degree p.

- 7. Suppose $f(x) \in \mathbb{Q}[x]$ is an irreducible polynomial of degree p where p is prime. Let E be the splitting field of f(x) over \mathbb{Q} . Let $\alpha \in E$ be a zero of f, $G := \operatorname{Gal}(E/\mathbb{Q})$, and $H := \operatorname{Gal}(E/\mathbb{Q}[\alpha])$. Suppose H is not trivial.
 - (a) (10 points) Prove that [G:H]=p and gcd(|H|,p)=1.

(b) (5 points) Prove that H is not a normal subgroup of G.

(c) (10 points) Let P be a Sylow p-subgroup of G. Prove that $N_G(P) \neq P$. (Hint: assuming $N_G(P) = P$, deduce that $H = \{g \in G | o(g) \neq p\}$ where o(g) is the order of g.)