Name: ______

"[n]" means the problem is worth n points.

- 1. Let G be a group of order $240 = 2^4 \cdot 3 \cdot 5$.
- a [10]. How many p-Sylow subgroups might G have, for p = 2, 3, 5?

b [15]. If G has a subgroup of order 15, show that it has an element of order 15.

c [15]. Say G doesn't have a subgroup of order 15. Show that the number of 3-Sylows is 10 or 40.

- 2. Let R denote a commutative ring and I an ideal, $I \neq R$. We say that R has nilpotents if $\exists r \in R, n \in \mathbb{N}, r \neq 0, r^n = 0$.
- a [10]. Give an example where R/I has nilpotents but R doesn't.

b [10]. Give an example where R has nilpotents but R/I doesn't.

3. Let $\phi: \mathbb{C}[x] \to F$ be a ring homomorphism where F is a field, $\phi(1) \neq 0$, a [10]. Give an example where ϕ is not onto.

b [20]. If ϕ is onto, show that $F \cong \mathbb{C}$.

4a [10]. Give an example of two finitely generated \mathbb{Z} -modules, M and N, such that M,N are not isomorphic (as \mathbb{Z} -modules) but $\mathbb{Q} \otimes_{\mathbb{Z}} M \cong \mathbb{Q} \otimes_{\mathbb{Z}} N$ (as \mathbb{Q} -modules).

4b [10]. Let M be a finitely generated $\mathbb{R}[x]$ -module, described using the classification of f.g. modules over a PID. Give a similar description of $\mathbb{C}[x] \otimes_{\mathbb{R}[x]} M$ as a $\mathbb{C}[x]$ -module.

4c [10]. Show that if M,N are two finitely generated $\mathbb{R}[x]$ -modules, and $\mathbb{C}[x] \otimes_{\mathbb{R}[x]} M \cong \mathbb{C}[x] \otimes_{\mathbb{R}[x]} N$ (as $\mathbb{C}[x]$ -modules), then $M \cong N$ (as $\mathbb{R}[x]$ -modules).

5 [15]. Let F be a field of characteristic p, and $f \in F[x]$ a polynomial, $f(x) = \sum_i f_i x^i$. Give necessary and sufficient conditions on the $\{f_i\}$ for $f(x^p)$ itself to be a pth power, i.e. $\exists g(x)$ s.t. $f(x^p) = g(x)^p$. In particular, prove that your condition is necessary.

- 6. Let $F \ge K$ be an extension field of degree 2. a [10]. If K is characteristic not 2, show F is Galois over K.

b [5]. Give an example where F is Galois over K even though char K=2.

c [10]. Give an example where F is not Galois over K.