Department of Mathematics MA/PhD Qualifying Examination in Algebra

Examiners: Wee Teck Gan, Philip Gill and Cristian Popescu

1:00-4:00pm, AP&M 7421 Tuesday September 5, 2006

#1.1 20 #1.2 20 #2.120#2.2 20 30 Name #3.1 20 #3.2 #3.3 30 #4.1 40 200 Total

- Do all problems.
- Add your name in the space provided and staple this page to your solutions for Section #1.
- Start your solutions for the questions in Sections #2 and #4 on a fresh page.
- Write your name clearly on every sheet submitted.

Linear Algebra

Question 1.1. Assume that (λ, x) is an eigenpair of $A \in M_n$ such that $am(\lambda) = gm(\lambda) = 1$. Prove that there exists a nonsingular matrix $(x \mid X)$ with inverse $(y \mid Y)^*$ such that

$$\begin{pmatrix} y^\star \\ Y^\star \end{pmatrix} A \begin{pmatrix} x & X \end{pmatrix} = \begin{pmatrix} \lambda & 0 \\ 0 & M \end{pmatrix}.$$

Question 1.2. Given $A \in M_{m,n}$ with $m \geq n$, prove that there exists a unique $U \in M_{m,n}$ with orthonormal columns, and a unique Hermitian positive semidefinite $H \in M_n$ such that A = UH.

(State in detail any auxiliary results that you use.)

2. Group Theory

Question 2.1. Let G be a group and let $\mathcal{Z}(G)$ denote its center.

- (a) Show that if $G/\mathcal{Z}(G)$ is cyclic then $G=\mathcal{Z}(G)$.
- (b) Show that if $card(G) = p^3$, for some prime number p and G is non-commutative then $card(\mathcal{Z}(G)) = p$.
- (c) Construct a non-commutative group G of cardinality (order) 16 whose center $\mathcal{Z}(G)$ is not cyclic.

Note. As usual, card(X) denotes the cardinality of the set X.

Question 2.2. Let n be an integer. Let G_n be the group given by generators and relations as follows.

$$G_n = \langle x, y \mid x^3 = 1, xyx^{-1} = y^n \rangle$$

- (a) Provide (with proof) necessary and sufficient conditions on the integer n for the group G_n to be finite.
- (b) Assuming that G_n is finite, compute its order as a function of n.

3. Ring Theory and Module Theory

Question 3.1. Let X and Y be two independent variables.

- (a) Prove that the ring $R_1 := \mathbb{Q}(X)[Y]/((Y^2+X)^3)$ is a local ring.
- (b) Prove that the ring $R_2 := \mathbb{Q}[X,Y]/((Y^2+X)^3)$ is not a local ring by giving examples (with proof) of two distinct maximal ideals in R_2 .
- (c) Give an example of a prime ideal in R_2 which is not maximal. Are there such ideals in R_1 ? Justify your answers.

Note. As usual, \mathbb{Q} denotes the field of rational numbers, $\mathbb{Q}(X)$ denotes the field of rational functions of variable X with coefficients in \mathbb{Q} . $\mathbb{Q}(X)[Y]$ denotes the ring of polynomials of variable Y with coefficients in $\mathbb{Q}(X)$, and $\mathbb{Q}[X,Y]$ denotes the ring of polynomials of variables X, Y with coefficients in \mathbb{Q} . Also, recall that a commutative ring is called **local** if it has a unique maximal ideal.

Question 3.2. Consider the \mathbb{Z} -algebra $R := \mathbb{Z}[X]/(2X+1)$.

- (a) Show that there is a ring isomorphism $R \simeq S^{-1}\mathbb{Z}$, where S is the multiplicatively closed subset of \mathbb{Z} consisting of all the non-negative integral powers of 2, i.e. $S := \{1, 2, 2^2, 2^3, \dots\}$.
- (b) Is R a flat \mathbb{Z} -module? Justify your answer.
- (c) Is R a projective \mathbb{Z} -module? Justify your answer.
- (d) Is R an injective \mathbb{Z} -module? Justify your answer.

Question 3.3. Let $R := \mathbb{Z}[\sqrt{10}] = \{a + b\sqrt{10} \mid a, b \in \mathbb{Z}\}$, viewed as a subring of the field of complex numbers with the usual operations.

- (a) Show that the group of units R^{\times} of R is infinite.
- (b) Show that the element 2 is irreducible in R.
- (c) Show that the element 2 is not prime in R.
- (d) Show that every element in R can be written as a product of irreducible elements.
- (e) Is R a unique factorization domain? Justify your answer.

Hint. Recall that there is a multiplicative norm map $N: \mathbb{Z}[\sqrt{10}] \longrightarrow \mathbb{Z}$, given by $N(a+b\sqrt{10})=a^2-10b^2$, for all $a,b\in\mathbb{Z}$.

4. Field Theory and Galois Theory

Question 4.1. Find the splitting fields and Galois groups of the following polynomials over Q. You should state clearly results that you use.

- (a) $(x^2+3)(x^3-5)$.
- (b) $(x^2-3)(x^3-7)$.
- (c) $x^{15} 2$.
- (d) $x^3 + 2x^2 + 1$.