ALGEBRA QUALIFYING EXAM TUESDAY MAY 23RD

You have three hours.

There as	re 7	problems,	and	the	total	number	of
points is	70.						

Name:_____

Signature:_____

Problem	Points	Score	
1	10		
2	10		
3	10		
4	10		
5	10		
6	10		
7	10		
Total	70		

1. (10pts) Let H be a finite Abelian group, with product written multiplicatively. Let $\mathbb{Z}_2 = \{e, a\}$, also written multiplicatively, so that $a^2 = e$. The corresponding generalized dihedral group is the semidirect product $G = H \rtimes_{\phi} \mathbb{Z}_2$, where $\phi(a)$ is the automorphism of H given by inverting elements, that is, $[\phi(a)](h) = h^{-1}$.

(a) Suppose that $H = \mathbb{Z}_3 \times \mathbb{Z}_3$. Find a presentation of $G = H \rtimes_{\phi} \mathbb{Z}_2$, with a brief justification.

(b) For which Abelian groups H is $G = H \rtimes_{\phi} \mathbb{Z}_2$ also Abelian?

(c) Must $G = H \rtimes_{\phi} \mathbb{Z}_2$ be solvable?

- 2. (10pts) Suppose that G is a simple group of order |G| = 168 = 2³·3·7. (There really is a simple group of that order).
 (a) Show that G does not have any subgroup H with index [G : H] ≤ 6.

(b) Show that G does have a subgroup H with index [G:H] = 8.

- 3. (10pts) Let $R = \mathbb{Z}[\sqrt{-6}]$. (a) Prove that 3 is an irreducible element of R which is not prime.

(b) Find an element $r \in R$ such that the ideal $I = \langle 3, r \rangle$ is a maximal ideal in R. Prove that I is not a principal ideal.

4. (10pts) Let R be a commutative ring, with unity, not equal to zero. If M and N are R-modules, (for the purposes of this question) call a multilinear map

$$f: M \times M \times M \longrightarrow N,$$

cyclically trilinear if

$$f(a, b, c) = f(b, c, a)$$
 for all $a, b, c \in M$.

Show how to construct a universal cyclically trilinear map

 $u: M \times M \times M \longrightarrow C_3(M),$

so that u is cyclically trilinear and if

$$f\colon M\times M\times M\longrightarrow N$$

is any other cyclically trilinear map, then there is a unique linear map

$$\phi \colon C_3(M) \longrightarrow N.$$

5. (10pts) Let J be an $n \times n$ Jordan block with eigenvalue $\lambda \in \mathbb{C}$. (a) Suppose that $\lambda \neq 0$. Show that the Jordan canonical form of J^2 is an $n \times n$ Jordan block with eigenvalue λ^2 . (b) Suppose that $\lambda = 0$. Show that the Jordan canonical form of J^2 has two Jordan blocks with eigenvalue 0; if n is even these Jordan blocks have size $n/2 \times n/2$ and if n is odd one Jordan block has size $(n+1)/2 \times (n+1)/2$ and the other has size $(n-1)/2 \times (n-1)/2$.

6. (10pts) Let F be a prime field, so that F is either isomorphic to \mathbb{Q} or \mathbb{F}_p , p a prime. Show that the algebraic closure of F is infinite dimensional over F.

7. (10pts) Let L/\mathbb{Q} be a splitting field for the polynomial $x^{11} - 1$. Find all intermediary fields $L/M/\mathbb{Q}$. For each intermediary field M find an element $\alpha \in M$ such that $M = \mathbb{Q}(\alpha)$.