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1 Introduction

Community detection deals with the identification of clusters within a network where vertices
are more densely connected internally than with the rest of the network. It is a fundamental
task in network analysis and has many applications in social networks, biology, natural language
processing, etc. For instance, Facebook can be viewed as a big network where users are represented
as vertices and friendships as edges. In this context, community detection can help identify
different communities such as family members, school friends, and work colleagues based on their
friendship connections.

In real-world scenarios, interactions often involve more than two vertices, such as in group
emails, research collaborations, and biological interactions. To address this complexity, this thesis
focuses on the community detection problem on hypergraphs, where hyperedges can contain more
than two vertices. The main problem we aim to solve is: given the connection information of a
hypergraph (represented by the adjacency matrix or combinatorial Laplacian), can we accurately
recover its clusters?

In the case of simple graphs, the adjacency matrix provides complete information about the
edges. However, for hypergraphs, the adjacency matrix only offers aggregated information about
connectivity, making the problem more challenging. Therefore, this thesis aims to develop algo-
rithms capable of recovering the cluster structure of vertices given only the limited connection
information available in hypergraphs.

1.1 Graphs and Hypergraphs

We first define graphs, hypergraphs, and the associated matrices. In this paper, we only consider
simple undirected graphs and hypergraphs with unordered edges and without loops.

Definition 1.1. (Graph)
A graph is a pair G = (V,E), where V is a set whose elements are called vertices, and E ⊆
{{v1, v2} | v1, v2 ∈ V and v1 ̸= v2} is a set of unordered pairs of vertices, whose elements are called
edges. The degree of a vertex v ∈ V is the number of edges in G that contain v.

Definition 1.2. (Adjacency matrix of a graph)
For the graph G = (V,E), |V | = n, the adjacency matrix of G is a n× n symmetric matrix with

Aij =

{
1 if (vi,vj) ∈ E

0 if (vi,vj) /∈ E

In an ordinary graph, an edge only connects two different vertices. A hyperedge is a generaliza-
tion of edge that can connect more than two vertices. Based on hyperedge, we define hypergraphs.

Definition 1.3. (Hypergraph)
A Hypergraph is a pair H = (V,E), where V is a set whose elements are called vertices, and E is
a non-empty set of hyperedges such that for each e ∈ E, e is a subset of V . Specifically, if |e| = m
for every e ∈ E, we call H a m-uniform hypergraph. The degree of a vertex v ∈ V is the number
of hyperedges in H that contain v.

Remark 1.4. All vertices in a hyperedge are distinct; the hypergraph contains no loops.

A hypergraph is a collection ofm-uniform hypergraphs, that is, H =
⋃

m Hm with E =
⋃

m Em.
One can associate anm-uniform hypergraphHm = ([n], Em) to an order-m symmetric tensor A(m),

where the entry A
(m)
v1,...,vm denotes the presence of the m-hyperedge e = {v1, . . . , vm}, i.e.,

A(m)
e := A(m)

v1,...,vm = 1{e∈Em}, {v1, . . . , vm} ⊂ [n].

However, for a non-uniform hypergraph, one is not able to aggregate information of each uniform
layer because the tensors are of different orders. It’s sometimes easier to work with the adjacency
matrix defined below.
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Definition 1.5. (Adjacency matrix of a hypergraph)
For the hypergraph H = (V,E), |V | = n, the adjacency matrix of H is a n× n symmetric matrix
A with

Aij := 1{i ̸=j} ·
∑
m

∑
e∈E(Hm),e⊃{i,j}

1e,

Another important matrix is the Combinatorial Laplacian (or Laplacian matrix), which is often
used to study the spectral properties of graphs and hypergraphs, where the second smallest eigen-
value of the Laplacian (or the Fiedler value) provides information about the graph’s connectivity
and is commonly used in partitioning problems. See [Chu97] for a detailed analysis.

Definition 1.6. (Combinatorial Laplacian)
For any graph G = (V,E) and hypergraph H = (VH , EH), the combinatorial Laplacian is defined
as

L = D −A

where A is the adjacency matrix associated with G and H, and D is the degree matrix with
Dii =

∑
j Aij.

Remark 1.7. Hyperedges of size m containing vi are counted (m− 1) times in Dii.

The normalized Laplacian matrix is a variant of the Laplacian matrix that utilizes a normaliza-
tion factor D−1/2 to adjust the influence of each vertex based on its degree, hence counterbalancing
the impact of high-degree vertices in the analysis.

Definition 1.8. For any graph G = (V,E) and hypergraph H = (VH , EH), the normalized Lapla-
cian is defined as

L = I −D−1/2AD−1/2

where A is the adjacency matrix associated with G and H, and D is the degree matrix with
Dii =

∑
j Aij.

1.2 Stochastic Block Model and HSBM

A Stochastic Block Model is a type of probabilistic graphical model that is used to generate
random graphs based on a partitioning of the vertex set into blocks (or communities).

Definition 1.9. (Stochastic Block Model, SBM)
Let G = (V,E) be a graph on n vertices, where V = [n] is composed of K disjoint blocks, i.e.,
V = ∪K

k=1Vk. The proportion of each block can be denoted by αk = |Vk| /|V | and we define the
vector α = (α1, . . . , αK) with ∥α∥1 = 1. Let σ ∈ [K]n denote the membership vector of the vertices,
i.e., σ(v) = k if the vertex v belongs to block Vk. Let each entry of the membership vector σ be
sampled independently under α. Let P ∈ RK×K be a symmetric matrix, and each possible edge
e = {v1, v2} is generated with probability P (1e = 1) = Pσ(v1),σ(v2). We denote this distribution on
the set of graphs by

(σ,G) ∼ SBM(n, α,P) .

In this paper, we are particularly interested in binary m-uniform hypergraph stochastic block
model.

Definition 1.10. (Binary m-uniform HSBM).
Let σ = (σ1, . . . , σn) ∈ {±1}n denote the block assignment vector on vertex set V = [n], where
σ is chosen uniformly at random among all vectors satisfying 1⊤

n σ = 0 to ensure a binary bal-
anced cluster distribution. Let m ∈ N be some fixed integer. The m-uniform hypergraph Hm =
([n], Em, pm, qm) is drawn in the following manner: each m-hyperedge e := {v1, . . . , vm} ⊂ [n] is
sampled independently with probability pm if σv1 = . . . = σvm , otherwise with probability qm. We
denote this distribution on the set of hypergraphs by

(σ,Hm) ∼ HSBM(n,m, pm, qm) .
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The goal of community detection is to recover σ by observing G or H, up to some level of
accuracy. We next define different regimes of recovery for the community detection problem.

Definition 1.11. (mismatch ratio)
For an estimation σ∗ of σ, we define the mismatch ratio

ηn := η(z, σ̂) =
1

n
inf

π∈SK

n∑
i=1

1 (σ∗
i ̸= π (σi))

where SK denotes the group of all permutations on [K].

Based on the mismatch ratio, we have four types of recovery: exact recovery which requires the
entire partition of the graph to be correctly recovered; almost exact recovery which allows for a
vanishing number of misclassified vertices; partial recovery which allows for a constant fraction of
misclassified vertices; and weak recovery which requires that the estimation is better than random
guess.

Definition 1.12. (Recovery)
(1) Exact recovery (strong consistency): P (ηn = 0) ≥ 1− o(1).
(2) Almost exact recovery (weak consistency): P (ηn = o(1)) ≥ 1− o(1).
(3) Partial recovery: P (ηn ≤ 1− γ) ≥ 1− o(1) for γ ∈

(
∥α∥22, 1

)
.

(4) Weak recovery (detection): P
(
ηn ≤ 1− ∥α∥22 − Ω(1)

)
≥ 1− o(1).

The regime for exact recovery requires that the degree of each vertex grow logarithmically
with the number of total vertices, or otherwise the exact recovery can not be achieved statistically
because there will be isolated vertices in the graph, with high probability. In the rest of the paper,
we assume the model suits the regime for exact recovery.

Suppose A is an adjacency matrix sampled from binary m-uniform hypergraph stochastic block
model HSBM(n,m, pm, qm). Without loss of generality, we assume the first n/2 nodes form one
community and the second half form the other community. Let A∗ = E[A] be the expectation of
A, and then we have

A∗ := E[A] =

[
p q
q p

]
⊗
(
1n/21

⊤
n/2

)
, (1)

p := pm

(
n/2− 2

m− 2

)
+

((
n− 2

m− 2

)
−
(
n/2− 2

m− 2

))
qm, (2)

q := qm

(
n− 2

m− 2

)
, (3)

where

pm =
am(
n−1
m−1

) log n, qm =
bm(
n−1
m−1

) log n, am, bm = Ω(1).

Remark 1.13. Recovery can be thought as finding a very close approximation to u∗
2 since the sign

of u∗
2 exactly recovers the model.

Notice that an m-uniform hypergraph can be accurately defined through a tensor P ∈ Rkm

,
where P [i1, i2, . . . , im] = 1 if there is a hyperedge involving the i1, i2, . . . , im vertices, and 0 other-
wise. Given an adjacency tensor, we can recover the full information about the hypergraph. But
can we recover the HSBM if the information available is restricted to an aggregated matrix, like
the adjacency matrix and combinatorial Laplacian? This is the question we aim to answer.
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1.3 Recent Works

In this section, we introduce different lines of research on weak recovery, partial recovery, exact
recovery, and the symmetric stochastic block model (SSBM). By definition, an algorithm can solve
weak recovery (or detection) if its estimated community labels assigned to the vertices are correct
significantly more often than what would be expected by random chance.

First note that for weak recovery, the vertex has constant expected degree or the problem will
be trivially solved by applying the degree variations. [Dec+11] first conjectured the existence of
the phase transition phenomenon for the weak recovery problem of SSBM(n, k, a/n, b/n) and the
information-computation gap at 4 communities in the symmetric case. That is, weak recovery can
be efficiently achieved for any k ≥ 2 if and only if the Kesten-Stigum(KS) threshold

SNR =
(a− b)2

k(a+ (k − 1)b)
> 1,

and for k ≥ 4, it is possible to solve weak recovery information-theoretically for some SNR < 1.
[Mas14] first showed that KS-threshold can be achieved efficiently when k = 2. The impossibil-
ity part of the conjecture for binary symmetric communities is proved in [MNS15], which shows
by information-theoretic means that when (a − b)2 ≤ 2(a + b), it is impossible to achieve weak
recovery, because the SBM is indistinguishable from the Erdős-Rényi model with edge proba-
bility (a + b)/(2n). While weak recovery allows for a non-trivial fraction of misclassified ver-
tices, partial recovery allows for a constant fraction of misclassified vertices. In the symmetric

SSBM(n, 2, a/n, b/n), the regime for partial recovery takes place when SNR = (a−b)2

2(a+b) = O(1).

One main goal is to identify the optimal tradeoff between the misclassification of vertices and
SNR, where [YP14] and [CRV15] show that the upper bound on the fraction of incorrectly recov-
ered vertices is of the form C exp(−cSNR) when SNR is large. Furthermore, [YP14] and [MNS14]
showed that almost exact recovery is solvable in SSBM(n, 2, an/n, bn/n) if and only if

(an − bn)
2

2 (an + bn)
= ω(1).

In 2014, [MNS14] and [ABH15] found that exact recovery problem for binary symmetric com-
munities also has a phase transition, |

√
a −

√
b| >

√
2, in the logarithmic regime, shown to be

also efficiently achievable. For the hypergraph case, more recently, [DW23] identified the exact
recovery threshold in the non-uniform case, and proposed a two-stage algorithm achieving exact
recovery down to the information-theoretic threshold. For the binary symmetric non-uniform case,
[Wan23] shows the impossibility part under the information-theoretic threshold, and [GJ23] shows
that spectral algorithm on the adjacency matrix can achieve exact recovery under the min-bisection
threshold, which is different from and above the threshold introduced in [Wan23].

1.4 Notations

Before diving into the proof, we first introduce some notations which will be used throughout this
paper. For any real numbers a, b ∈ R, we denote a ∨ b = max{a, b} and a ∧ b = min{a, b}. Let
sgn : R → {±1, 0} be the function defined by sgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0, and
sgn(x) = 0 if x = 0. We also extend the definition to vectors.

For any vector x ∈ Cn, we define infinity norm ∥x∥∞ = maxi |xi| and 2-norm ∥x∥ =
√∑n

i=1 x
2
i .

For any matrix A ∈ Cn×m, let Ai· and A·j denote its i-th row and j-th column respectively. Let

∥A∥ = max∥x∥=1 ∥Ax∥ denote the spectral norm, ∥A∥F :=
√∑

i,j |Aij |2 denote the Frobenius

norm and ∥A∥2,∞ = max∥x∥=1 ∥Ax∥∞ = maxi ∥Ai∥ denote the two-to-infinity norm. We denote
its conjugate transpose by AH and its Moore-Penrose inverse by A+. We denote by 1n the n× 1
vector with all entries being 1 and let Jn = 1n1

⊤
n be the n × n matrix of all ones. Let dmin,

dmax be the minimum and the maximum degree of the vertices correspondingly. Let A∗, D∗,
L∗ be the expected adjacency matrix, degree matrix, and combinatorial Laplacian, and u∗

2 be
the eigenvector corresponding to the second smallest eigenvalue of L∗. Furthermore, we use the
Bachmann-Landau notation o(·), O(·), ω(·),Ω(·),Θ(·) etc. throughout the paper.
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2 Main Results

Algorithm 1 Spectral Clustering algorithm

Input: Adjacency matrix A
1: Compute the combinatorial Laplacian L = D −A.
2: Find the eigenvector u2 corresponding to the second smallest eigenvalue λ2 of L.
3: Obtain the partitioning based on sgn(u2).

The main goal of this paper is to show that the spectral clustering algorithm for the com-
binatorial Laplacian achieves strong consistency for the model HSBM(n,m, pm, qm) with pm =

am

(n−1
m−1)

log n, qm = bm
(n−1
m−1)

log n when the min-bisection threshold for strong consistency is estab-

lished:

I(m, am, bm) = max
t≥0

1

2m−1

[
am

(
1− e−(m−1)t

)
+ bm

m−1∑
r=1

(
m− 1

r

)(
1− e−(m−1−2r)t

)]
> 1.

Following a similar route as in [DLS21] where the result was established in the graph case, our
proof contains two main parts. First, we show that the second eigenvalue of the combinatorial
Laplacian, λ2, is well ”separated” from λ1 = 0 and λ3. This is to ensure the stability of the
algorithm, based on the fact that the second eigenvector can be computed accurately. Second, we
show that strong consistency can be achieved by approximating u2 with a ũ2 such that:

1. The entrywise error between u2 and ũ2 is negligible.

2. The entries of ũ2 exactly recover HSBM(n,m, pm, qm).

3 Eigenvalue Separation

In this section, we show that λ2 is well ”separated” from λ1 = 0 and λ3 by finding the lower and
upper bound for λ2 and a lower bound for λ3. This section is to ensure that the eigenvector we
computed actually corresponds to u∗

2.

3.1 Lower Bound for λ3(L)

In this section, we would like to find a lower bound for λ3(L). Our goal is to prove Lemma 3.1,
which shows that λ3(L) is bounded from below with probability based on am and bm. With the
help of Lemma 3.3, we can show that with high probability, λ3(L) is bounded from below when
above the information-theoretic threshold.

Lemma 3.1. (Lower bound for the third eigenvalue in the critical regime.)
Suppose pm = am

(n−1
m−1)

log n, qm = bm
(n−1
m−1)

log n. Then for any ξ > 0 and ϵ > 0, there exists

C = C(ξ, am, bm, ϵ) > 0 such that

λ3(L) ≥ (m− 1)γ log n− (m− 1)(ξ + ϵ) log n

where γ = 1
2m−1 am + (1− 1

2m−1 )bm, with probability at least 1− Cn−f(ξ;am,bm).

We introduce the following lemmas to help us prove Lemma 3.1.

Lemma 3.2. Let A be the adjacency matrix of HSBM(n,m, pm, qm) where pm = am

(n−1
m−1)

log n, qm =

bm
(n−1
m−1)

log n. Then for any 0 < ξ < γ, γ = 1
2m−1 am + (1− 1

2m−1 )bm, we have

P
(
dmin ≥ (m− 1)γ log n− (m− 1)ξ log n

)
≥ 1− 2n−f(ξ;am,bm)
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for n larger than a constant N = N(am, bm). Here

f(ξ; am, bm) = γ(1− ξ

γ
) log(1− ξ

γ
) + ξ − 1.

The function f characterizes a trade-off between the perturbation of dmin and its probability.
Note when ξ is sufficiently close to 0, f will eventually be negative, then Lemma 3.2 loses its
usefulness. However, when above the information-theoretic treshold for strong consistency, we can
ensure that dmin is well controlled from below.

Lemma 3.3. When above the information-theoretic threshold for strong consistency, that is,

when D(m)
GH = 1

2m−1

(√
am −

√
bm
)2

> 1, there exists 0 < ξ < 1
2m−1 am +

(
1− 1

2m−1

)
bm such

that f(ξ; am, bm) > 0.

Lemma 3.4. (Weyl’s inequality)
Let A,B ∈ Rm×n be two real m× n matrices, then

|σi(A+B)− σi(A)| ≤ ∥B∥

for every 1 ≤ i ≤ m ∧ n. Furthermore, if m = n and A,B ∈ Rn×n are real symmetric, then
|λi(A+B)− λi(A)| ≤ ∥B∥ for all 1 ≤ i ≤ n.

Lemma 3.5. [DW23] For each 2 ≤ m ≤ M , let Hm = ([n], Em) be an inhomogeneous m-uniform
Erdős-Rényi hypergraph associated with a probability tensor Q(m) and an adjacency tensor A(m)

such that each m-hyperedge e = {i1, i2, . . . , im} ⊂ [n] appears with probability

P
(
A(m)

e = 1
)
= Q(m)

i1,...,im
=

[(
n− 1

m− 1

)]−1

d
(m)
i1,...,im

.

Denote d
(m)
max := maxi1,...,im∈[n] d

(m)
i1,...,im

. Let H =
⋃M

m=2 Hm be the inhomogeneous non-uniform

Erdős-Rényi hypergraph and define dmax :=
∑

m∈M d
(m)
max. Suppose that

dmax :=
∑

m∈M
d(m)
max ≥ c log n,

for some constant c > 0, then with probability at least 1− 2n−10 − 2e−n, the adjacency matrix A
of H satisfies

∥A−A∗∥ ≤ C ·
√
dmax,

where constant C: = 10M2 + 2β with β = β0

√
β1 +M , and β0, β1 satisfying

β0 = 16 + 32M
(
1 + e2

)
+ 1792

(
1 + e−2

)
M2, M−1β1 log

(
M−1β1

)
−M−1β1 + 1 > 11/c.

Proof of Lemma 3.1. By Weyl’s inequality (Lemma 3.4) and Lemma 3.5, we have

λ3(L) ≥ λ3(L
∗) + λmin(L− L∗)

≥ λ3(L
∗) + λmin(D −D∗)− ∥A−A∗∥

=
n(p+ q)

2
+ λmin(D)− n(p+ q)

2
− ∥A−A∗∥

= λmin(D)− ∥A−A∗∥

= dmin −O(
√
log n)

where p, q are the values defined in equation (2) and (3).
Therefore, to bound λ3(L) from below, we need to determine a lower bound for dmin.
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By Lemma 3.2, for n large enough

P
(
dmin ≥ (m− 1)γ log n− (m− 1)ξ log n

)
≥ 1− 2n−f(ξ;am,bm).

Then by Lemma 3.5,

P
(
∥A−A∗∥ ≤ C1

√
log n

)
≥ 1− 2n−10 − 2e−n.

Therefore we have

P
(
λ3(L) ≥ (m− 1)γ log n− (m− 1)(ξ + ϵ) log n

)
≥ 1− Cn−f(ξ;am,bm).

In the remaining of this subsection, we prove Lemma 3.2 and Lemma 3.3. In Lemma 3.2, we
use Poisson approximation to control dmin, and Lemma 3.3 shows the feasibility of Lemma 3.2
under the critical regime.

Proof of Lemma 3.2. For m-uniform hypergraphs, let E be the set of all possible m-uniform
edges,

di =

n∑
j=1

Aij =

n∑
j=1

∑
i,j∈e
e∈E

1e =
∑
i∈e
e∈E

(m− 1)1e

= (m− 1)


∑
i∈e
e∈E

∀j∈e,σ(i)=σ(j)

1e +
∑
i∈e
e∈E

∃j∈e,σ(i)̸=σ(j)

1e

 . (4)

Notice that ∑
i∈e
e∈E

∀j∈e,σ(i)=σ(j)

1e ∼ Binomial

((
n/2− 1

m− 1

)
, pm

)

and ∑
i∈e
e∈E

∃j∈e,σ(i)̸=σ(j)

1e ∼ Binomial

((
n− 1

m− 1

)
−
(
n/2− 1

m− 1

)
, qm

)
.

So we can control the minimum degree in the critical regime by the following Poisson approximation
to binomials.

Lemma 3.6. Let X ∼ Binomial(
(
n/2−1
m−1

)
, pm) and Y ∼ Binomial(

(
n−1
m−1

)
−
(
n/2−1
m−1

)
, qm) for n even.

Suppose pm = am

(n−1
m−1)

log n and qm = bm
(n−1
m−1)

log n for constants am and bm. Let

γ =
1

2m−1
am + (1− 1

2m−1
)bm,

then for every k ≤ γ log n,

P(X + Y = k) ≤ (1 + o(1))n−γ (γ log n)
k

k!
.
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Proof of Lemma 3.6. For k ≤ γ log n,

P(X = k) =

((n/2−1
m−1

)
k

)
pkm(1− pm)(

n/2−1
m−1 )−k

≤ (1 + o(1))

(
1

2m−1
nm−1

(m−1)!

)k
k!

(
am(m− 1)! log n

nm−1

)k (
1− am(m− 1)! log n

nm−1

) 1

2m−1
nm−1

(m−1)!
−k

≤ (1 + o(1))n− am
2m−1

(
1

2m−1 am log n
)k

k!

where the last inequality is due to(
1− am(m− 1)! log n

nm−1

) 1

2m−1
nm−1

(m−1)!
−k

≤ (1 + o(1)) exp

(
−am(m− 1)! log n

nm−1

(
1

2m−1

nm−1

(m− 1)!
− k

))
= (1 + o(1)) exp

(
− am
2m−1

log n
)

= (1 + o(1))n− am
2m−1 .

Similarly,

P(Y = k) ≤ (1 + o(1))n−(1− 1

2m−1 )bm
(
(1− 1

2m−1 )bm log n
)k

k!
. (5)

Finally note that

P(X + Y = k) =

k∑
l=0

P(X = l)P(Y = k − l)

≤ (1 + o(1))n−γ (γ log n)
k

k!
. (6)

Lemma 3.7.
(i) (Chernoff) Let {Xi}ni=1 be independent variables. Assume 0 ≤ Xi ≤ 1 for each i. Let
X = X1 + · · ·+Xn and µ = EX. Then for any t > 0,

P (|X − µ| ≥ t) ≤ 2 exp

(
− t2

2µ+ t

)
.

As a result, for any r > 0, there exists C = C(r) > 0 such that

P
(
|X − µ| ≥ C

(
log n+

√
µ log n

))
≤ 2n−r.

(ii) (Bennett) Let X ∼ Poisson(λ). Then for any 0 < x < λ,

P (X ≤ λ− x) ≤ exp

(
−x2

2λ
h
(
−x

λ

))
,

where h(u) = 2u−2 ((1 + u) log(1 + u)− u).

With the help of Poisson approximation, we can now prove Lemma 3.2.
Let di be the degree of the ith node. Let X be a Poisson variable with mean γ = 1

2m−1 am +
(1− 1

2m−1 )bm. Then by Lemma 3.6 and 3.7, for n large enough, we have

P
(
di ≤ (m− 1)γ log n− (m− 1)ξ log n

)
≤ 2P

(
X ≤ γ log n− ξ log n

)
≤ 2n−f(ξ;am,bm)−1.

10



Taking union bound yields

P
(
dmin ≥ (m− 1)γ log n− (m− 1)ξ log n

)
≥ 1− 2n−f(ξ;am,bm)

and this finishes the proof of Lemma 3.1.

Now we continue to prove Lemma 3.3, which shows that when above the information-theoretic
threshold, λ3(L) is bounded from below as in Lemma 3.1 with high probability.

Proof of Lemma 3.3. Let γ = 1
2m−1 am + (1− 1

2m−1 )bm, then

f(ξ; γ) = γ(1− ξ

γ
) log(1− ξ

γ
) + ξ − 1.

Note that
∂f

∂ξ
= − log(1− ξ

γ
) > 0

when ξ < γ. We choose ξ∗ = 1
2m−1 (am − bm), it remains to show that f(ξ∗; γ) > 0 when above

the information-theoretic threshold. From D(m)
GH = 1

2m−1

(√
am −

√
bm
)2

> 1, we have

am + bm > 2
√
ambm + 2m−1

Note that

f(ξ∗; γ) = γ(1− ξ∗

γ
) log(1− ξ∗

γ
) + ξ∗ − 1

≥ bm

(
log

(
bm

1
2m−1 am + (1− 1

2m−1 )bm

)
+

1

2m−2

√
am
bm

− 1

2m−2

)
= bm

(
1

2m−2

√
am
bm

− log

(
am

2m−1bm
+ 1− 1

2m−1

)
− 1

2m−2

)
.

Let x = am

bm
, by differentiation, we have

1

2m−2

√
x− log(

x

2m−1
+ 1− 1

2m−1
)− 1

2m−2
> 0

when x > 1. This completes the proof of Lemma 3.3.

3.2 Upper Bound for λ2(L)

In this section, we aim to find an upper bound for λ2(L). By min-max principle, we can bound
λ2(L) from above using dout and a small error 2

n ⟨dout − d∗out, 1n⟩ where (dout)i =
∑

σ(i)̸=σ(j) Aij .

We further show that dout = O(log n) and the error is negligible compared to dout .

Lemma 3.8. (Upper bound for the second eigenvalue in the critical regime.)

Suppose pm = am

(n−1
m−1)

log n, qm = bm
(n−1
m−1)

log n where I
(m)
GH = 1

2m−1 (
√
am −

√
bm)2 > 1. Then

λ2(L) ≤ (m− 1)bm log n+O(log n/n).

We introduce the following Lemmas to help us prove Lemma 3.8.

Lemma 3.9. Let A be an instance of the m-uniform hypergraph G(n,m, pm, qm). We define dout ∈
Rn to be the vector with the ith element being (dout)i =

∑
σ(i) ̸=σ(j) Aij, and define d∗out = E(dout).

Then

λ2(L) ≤ (m− 1)bm log n+
2

n
⟨dout − d∗out, 1n⟩.

11



Lemma 3.10. If bm = Ω(1), then for any r > 0 there exists C = C(bm, r,m) such that

|⟨dout − d∗out, 1n⟩| = O(log n).

Proof of Lemma 3.8. By Lemmas 3.9 and 3.10, we can easily see that Lemma 3.8 holds.

Proof of Lemma 3.9. By the min-max principle

λ2(L) = min
V ∈Vt

max
x∈V \{0}

⟨x, Lx⟩
⟨x, x⟩

≤ max
x∈span{1n,u∗

2}
∥x∥=1

⟨x, Lx⟩

= ⟨u∗
2, Lu

∗
2⟩ (7)

= ⟨u∗
2, (D −A)u∗

2⟩

=
2

n

2

n
2∑

i=1

n∑
j=n

2 +1

Aij


=

2

n
⟨dout, 1n⟩

=
2

n
d∗out +

2

n
⟨dout − d∗out, 1n⟩

= (m− 1)bm log n+
2

n
⟨dout − d∗out, 1n⟩ (8)

(7) is due to L1n = 0 and 1n ⊥ u∗
2,

(8) is due to

d∗out = 2

n
2∑

i=1

n∑
j=n

2 +1

E(Aij)

=
n2

2

(
n− 2

m− 2

)
bm(
n−1
m−1

) log n
=

n

2
(m− 1)bm log n

Proof of Lemma 3.10. Note that

⟨dout − d∗out, 1n⟩ = 2

n
2∑

i=1

n∑
j=n

2 +1

(Aij − E(Aij))

2

n
2∑

i=1

n∑
j=n

2 +1

Aij =

m−1∑
r=1

∑
e is like
(r,m−r)

1er(m− r).

Let
Xr =

∑
e is like
(r,m−r)

1er(m− r) = r(m− r)
∑

e is like
(r,m−r)

1e

Notice that the above 1es are independent random variables, and E(1e) =
bm logn

(n−1
m−1)

. By Chernoff

inequality, we have

|Xr − µ| = O

(
log n+

√
(log n)2

nm−1

)
= O(log n).

12



Since m is a finite number, by taking a finite weighted sum, we get

⟨dout − d∗out, 1n⟩ = O(log n).

3.3 Lower Bound for λ2(L)

In this section, we prove Lemma 3.11 which shows that λ2(L) is well controlled away from λ1 = 0.

Lemma 3.11. (Lower bound for the second eigenvalue in the critical regime.)

λ2(L) ≥ (m− 1)bm log n−O

(√
log n

n

)

We introduce the following lemmas to help us prove Lemma 3.11.

Lemma 3.12. Let A be an instance of the m-uniform hypergraph G(n,m, pm, qm). We define
dout ∈ Rn to be the vector with the ith element being (dout)i =

∑
σ(i) ̸=σ(j) Aij, and define d∗out =

E(dout). Let dmax = maxi di, then

P
(
∥dout − d∗out∥ ≥ C

√
ndmax

)
≤ 1− 2n−10 − 2e−n.

The generalized Davis-Kahan theorem provides bounds on the distance between the eigenspaces
of two matrices based on the difference between the matrices themselves. To give the generalized
Davis-Kahan theorem, we consider the following setup.

Consider the generalized eigenvalue problem Mu = λNu where M is Hermitian and N is
Hermitian positive definite. It has the same eigenpairs as the problem N−1Mu = λu. Consider
splitting the spectrum into two parts Λ1, Λ2. Let X be the matrix that has the eigenvectors of
N−1M as columns. Then N−1M is diagonalizable and can be written as

N−1M = XΛX−1 = X1Λ1Y
H
1 +X2Λ2Y

H
2

where

X−1 =
(
X1 X2

)−1
=

(
Y H
1

Y H
2

)
, Λ =

(
Λ1

Λ2

)
.

Lemma 3.13. [DLS21] (Generalized Davis-Kahan theorem).

Suppose δ = mini

∣∣∣(Λ2)i,i − λ̂
∣∣∣ is the absolute separation of λ̂ from Λ2, then for any vector û

we have

∥Pû∥ ≤

√
κ(N)

∥∥∥(N−1M − λ̂I
)
û
∥∥∥

δ

where P =
(
Y +
2

)H
Y H
2 = I −

(
X+

1

)H
XH

1 is the orthogonal projection matrix onto the orthogonal

complement of the column space of X1, κ(N) = ∥N∥ ·
∥∥N−1

∥∥ is the condition number of N and

Y +
2 is the Moore-Penrose inverse of Y2. Additionally, When N = I and (λ̂, û) is the eigenpair of

a matrix M̂ , we have

sin θ ≤ ∥(M − M̂)û∥
δ

,

where θ is the canonical angle between û and the column space of X1.

Lemma 3.14. Let u2 be the eigenvector of L that corresponds to λ2(L). Then

P

(
∥u2 − u∗

2∥ ≤ C1
1√
log n

)
≥ 1− C2n

−f(ξ;am,bm).

13



Assuming the 3 Lemmas above hold, we now prove Lemma 3.11.

Proof of Lemma 3.11. Let u2 be the eigenvector of L that corresponds to λ2(L), we have

λ2(L) = ⟨u2, Lu2⟩ = ⟨(u2 − u∗
2) + u∗

2, L ((u2 − u∗
2) + u∗

2)⟩
= ⟨u∗

2, Lu
∗
2⟩+ 2 ⟨u2 − u∗

2, Lu
∗
2⟩+ ⟨u2 − u∗

2, L (u2 − u∗
2)⟩

≥ ⟨u∗
2, Lu

∗
2⟩+ 2 ⟨u2 − u∗

2, Lu
∗
2⟩

≥ (m− 1)bm log n+
2

n
⟨dout − d∗out ,1n⟩ − 2 ∥u2 − u∗

2∥ ∥Lu∗
2∥

= (m− 1)bm log n+
2

n
⟨dout − d∗out ,1n⟩ −

4√
n
∥u2 − u∗

2∥ ∥dout∥ .

By Lemma 3.10, we have ⟨dout − d∗out,1n⟩ = O(log n). By Lemma 3.12, we have ∥dout − d∗out∥ =

O(
√
n log n). By Lemma 3.14, we have ∥u2 − u∗

2∥ = O
(

1√
logn

)
. Therefore, we have

λ2(L) ≥ (m− 1)bm log n−O

(√
log n

n

)
.

Now, we return to prove the Lemmas 3.12 and 3.14.

Proof of Lemma 3.12. Let Aout denote the matrix after removing all Aij where σ(i) = σ(j)
from A.

P
(
∥dout − d∗out∥ ≥ C

√
ndmax

)
= P

(
∥(Aout −A∗

out)1n∥ ≥ C
√
ndmax

)
≤ P

(
∥Aout −A∗

out∥ ≥ C
√
dmax

)
≤ 1− 2n−10 − 2e−n.

Step 2 is due to the definition of spectral norm and step 3 is derived from Lemma 3.5. Since
dmax = O(log n), we have ∥dout − d∗out∥ = O

(√
n log n

)
.

Proof of Lemma 3.14. Let θ be the angle between u2 and u∗
2. Assume θ ∈ [0, π/2], because

otherwise just let u2 := −u2. Let N = I, M = L, û = u∗
2, λ̂ = λ2 (L

∗), X1 =
[

1√
n
1n u2

]
and

P be the projection matrix onto the orthogonal complement of X1 in Lemma 3.13, we get

∥Pu∗
2∥ = sin(θ) ≤ ∥(L− L∗)u∗

2∥
δ

=
2 ∥dout − d∗out ∥

δ
√
n

,

where δ = λ3(L)− λ2 (L
∗) which we for now assume to be positive. Therefore

∥u2 − u∗
2∥ =

√
2− 2 cos(θ) ≤

√
2 sin(θ) ≤ 2

√
2 ∥dout − d∗out ∥

δ
√
n

.

It remains to find a lower bound for δ. Note that by Lemma 3.1 and Lemma 3.3, if pm =
am

(n−1
m−1)

log n, qm = bm
(n−1
m−1)

log n, and D(m)
GH = 1

2m−1 (
√
am −

√
bm)2 > 1, we have

P
(
λ3(L) ≥ (m− 1)bm log n+ (m− 1)ϵ log n

)
≥ 1− C1n

−f(ξ;am,bm).

Also, we have

λ2(L
∗) = nq = nqm

(
n− 2

m− 2

)
= (1 + o(1))(m− 1)bm log n.
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Therefore
P
(
δ ≥ (m− 1)ϵ log n

)
≥ 1− C1n

−f(ξ;am,bm).

By Lemma 3.12

P

(
∥u2 − u∗

2∥ ≤ C2
1√
log n

)
≥ 1− C3n

−f(ξ;am,bm).

4 Strong Consistency

In this section, we show that the sign of the second eigenvector of the combinatorial Laplacian
exactly recovers the partition of HSBM(n,m, pm, qm) under the min-bisection threshold. Notice
that the labels of the partitions are binary, and the only thing matters is the partition while the
labels can be used interchangeably. Therefore, in this section, any statement involving eigenvectors
are up to sign, meaning that for any eigenvector u, either u or −u will suit the statement. For
example, the expression ∥u− v∥ should be understood as mins∈{±1} ∥su− v∥.

4.1 Sketch of Proof

The main goal of this section is to prove Lemma 4.1, which shows that the second eigenvector of
the combinatorial Laplacian can be used to achieve strong consistency down to the min-bisection
threshold I(m, am, bm) > 1.

Lemma 4.1. Let u2 be the second eigenvector of the combinatorial Laplacian L, pm = am

(n−1
m−1)

log n,

qm = bm
(n−1
m−1)

log n, and I(m, am, bm) > 1. Then there exists η > 0 and s ∈ {±1} such that with

probability 1− o(1),
√
n (su2)i ≥ η for i ≤ n

2

and √
n (su2)i ≤ −η for i ≥ n

2
+ 1.

The Lemma can be derived from the following two statements: we approximate u2 with (D −
λ2(L)I)

−1Au∗
2 and show that with probability 1− o(1)

(i)
∥∥∥u2 − (D − λ2I)

−1
Au∗

2

∥∥∥
∞

= o(1/
√
n);

(ii) sgn
(
(D − λ2(L)I)

−1
Au∗

2

)
exactly recovers the communities and∣∣∣((D − λ2(L)I)

−1
Au∗

2

)
i

∣∣∣ ≥ η√
n

for all i and some η > 0.
We first look at (ii): Notice that dmax = O(log n) and λ2(L) = O(log n) from Lemma 3.8, thus

we have dmax − λ2(L) = O(log n). It remains to show that ∥Au∗
2∥∞ = Ω

(
logn√

n

)
. In this step we

use a Lemma from [GJ23] to help us prove the lower bound.

Lemma 4.2. [GJ23] Let m ∈ {2, 3, . . .}, and am > bm > 0, such that I(m, am, bm) > 1. Let
A be the adjacency matrix of G where G ∼ HSBM(n,m, am, bm). Then there exists a constant
ϵ := ϵ(m, am, bm) > 0 such that for any fixed i ∈ [n], with probability at least 1− o

(
n−1

)
,∑

j∈[n]

Aijσ
∗(i)σ∗(j) ≥ ϵ log n.
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Notice the ith row of |Au∗
2| is simply 1√

n

∑
j∈[n] Aijσ

∗(i)σ∗(j). Therefore, by Lemma 4.2, we

have ∥Au∗
2∥∞ = Ω

(
logn√

n

)
, and thus complete the proof of (ii).

For (i), by definition of u2, we have u2 = (D − λ2(L)I)
−1Au2. Plug in (i), we get

∥u2 − (D − λ2(L)I)
−1Au∗

2∥∞ = ∥(D − λ2(L)I)
−1A(u2 − u∗

2)∥∞.

From Lemma 3.2 and Lemma 3.8, we have ∥ (D − λ2I)
−1 ∥∞ = O

(
1

logn

)
. It remains to show that

∥A(u2 − u∗
2)∥∞ = o

(
log n√

n

)
.

We use the following important row-concentration property to help us prove the upper bound.

Lemma 4.3. [GJ23] (Row-Concentration Property of the adjacency matrix)
Let v ∈ Rn be a fixed vector. Suppose p ≥ maxi pi and constant c0 > 0. Then

P

|(A−A∗)k· v| ≤ ∥v∥∞
2 + 8m/c0

1 ∨ log
√
n∥v∥∞
∥v∥

n

(
n− 2

m− 2

)
p

 ≥ 1−O

(
1

n4

)
.

Lemma 4.3 is probabilistic, and it requires independence between A and v, while A and u2

are actually dependent from each other. In this step, we use the powerful leave-one-out technique
([ZB18], [Abb+20], [DLS21]) to help us construct independence. The idea is we construct a matrix
A(k) where its kth row and column is replaced by A∗ and keep other elements unchanged. Denote
L(k) as the corresponding Laplacian and uk

2 as the second eigenvector of L(k). In this case, the

kth row of A∗, denoted by A∗
k·, is now independent of (u

(k)
2 − u∗

2). Then by triangle inequality, for
the kth entry of A(u2 − u∗

2), we have

|Ak·(u2 − u∗
2)| ≤ |Ak·(u2 − u

(k)
2 )|+ |Ak·(u

(k)
2 − u∗

2)|.

|Ak·(u2−u
(k)
2 )| can be bounded with the generalized Davis-Kahan theorem (Lemma 3.13) and

|Ak·(u
(k)
2 − u∗

2)| can be bounded with the row-concentration property (Lemma 4.3).

4.2 Proof

Let A(k) be the matrix that A
(k)
ij = A∗

ij when i or j equals k and otherwise A
(k)
ij = Aij . Let

D(k), L(k) be the corresponding degree matrix and unnormalized Laplacian matrix of A(k). Let u2

be the eigenvector of L that corresponds to the second smallest eigenvalue λ2(L). Let u
(k)
2 be the

eigenvector of L(k) that corresponds to the second smallest eigenvalue λ2

(
L(k)

)
.

Lemma 4.4. There exists ξ = ξ(am, bm) > 0, C1, C2 > 0 depending on am, bm and ξ, such that
f(ξ; am, bm) > 0 and

P
(

max
1≤k≤n

∥∥∥u2 − u
(k)
2

∥∥∥ ≤ C1 ∥u2∥∞

)
≥ 1−

(
C2(am, bm, ξ)n−f(ξ;am,bm) ∧ (2n−10 − 2e−n)

)
.

Proof. In Lemma 3.13 we let M = L(k), N = I, û = u2, λ̂ = λ2(L), X1 =
[

1√
n
1n u2

]
. Then

up to sign of eigenvectors, ∥∥∥u2 − u
(k)
2

∥∥∥ ≤
√
2
∥∥(L(k) − L

)
u2

∥∥
δk

where δk = λ3

(
L(k)

)
− λ2(L). We first use Weyl’s theorem (Lemma 3.4) to bound λ3

(
L(k)

)
from below. The proof is similar to Lemma 3.1. We note that by the construction of A(k),
the (k, k)-entry of

(
D(k) −D∗) is 0 and the (i, i)-entry (i ̸= k) only differs from (di − d∗i ) by at

most O(
√
log n) with probability at least 1− 2n−10 − 2e−n by Lemma 3.5. Thus by Lemma 3.4,
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Lemma 3.1, Lemma 3.3, and the union bound, there exists 0 < ξ < 1
2m−1 (am − bm) such that

f(ξ; am, bm) > 0 and

min
1≤k≤n

λ3

(
L(k)

)
≥ min

1≤k≤n

(
λ3(L

∗) + λmin(L
(k) − L∗)

)
≥ λ3 (L

∗) + min
1≤k≤n

{
λmin

(
D(k) −D∗

)
−
∥∥∥A(k) −A∗

∥∥∥}
≥ λ3 (L

∗) + min
{
λmin (D −D∗)−O(

√
log n), 0

}
− max

1≤k≤n

∥∥∥A(k) −A∗
∥∥∥

= min

{
dmin −O(

√
log n),

(p+ q)n

2

}
− max

1≤m≤n

∥∥∥A(k) −A∗
∥∥∥

≥ (m− 1)bm log n+ ϵ1(am, bm, ξ) log n

with probability at least 1−
(
C1(am, bm, ξ)n−f(ξ;am,bm) ∧ (2n−10 − 2e−n)

)
. Using this in con-

junction with Lemma 3.1, we have

P
(

min
1≤k≤n

δk ≥ ϵ2(am, bm, ξ) log n

)
≥ 1−

(
C1(am, bm, ξ)n−f(ξ;am,bm) ∧ (2n−10 − 2e−n)

)
.

To bound the numerator, we consider bounding the kth entry of
(
L(k) − L

)
u2 and the other

entries separately. Let v =
(
L(k) − L

)
u2 then

|vk| =
∣∣∣(L(k) − L

)
k·
u2

∣∣∣ = |(L∗ − L)k· u2| ≤ ||L∗ − L||∞||u2∥∞.

For i ̸= k, ∑
i̸=k

v2i

1/2

=

∑
i ̸=k

(A∗
ik −Aik)

2
(
u
(k)
2 − u

(i)
2

)21/2

≤ 2 ∥u2∥∞

∑
i ̸=k

(A∗
ik −Aik)

2

1/2

≤ 2 ∥u2∥∞ ∥A∗ −A∥ .
Therefore by Lemma 3.5,

max
1≤k≤n

∥∥∥(L(k) − L
)
u2

∥∥∥ ≤ (∥L∗ − L∥∞ + 2 ∥A−A∗∥) ∥u2∥∞ = O(log n ∥u2∥∞)

with probability at least 1 −
(
C1(am, bm, ξ)n−f(ξ;am,bm) ∧ (2n−10 − 2e−n)

)
. This concludes the

proof.

Lemma 4.5. For u
(k)
2 defined as above

max
1≤k≤n

∣∣∣(A−A∗)k·

(
u
(k)
2 − u∗

2

)∣∣∣ = O

(
log n

log log n
∥u2∥∞

)
.

Proof. Note that u
(k)
2 is computed without using Ak·, thus (A−A∗)k· and u

(k)
2 −u∗

2 are indepen-

dent. We directly apply the row-concentration property (Lemma 4.3), letting v = u
(k)
2 − u∗

2 and
φ(t) = (1 ∨ log(1/t))−1, for t > 0

max
1≤k≤n

∣∣∣(A−A∗)k·

(
u
(k)
2 − u∗

2

)∣∣∣ = O

(
max

1≤k≤n
∥v∥∞φ

(
∥v∥√
n∥v∥∞

)
log n

)
.

Notice that φ(t) is non-decreasing, φ(t)/t is non-increasing and limt→0 φ(t) = 0. We set
x =

√
n∥v∥∞, y = ∥v∥, γ = 1/

√
log n and

(∗) = ∥v∥∞φ

(
∥v∥√
n||v∥∞

)
log n.
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When y/x ≥ γ we have

(∗) = log n√
n

· y · x
y
φ
(y
x

)
≤ log n√

n
· y
γ
φ(γ).

When y/x ≤ γ we have

(∗) = log n√
n

· xφ
(y
x

)
≤ log n√

n
· xφ(γ).

Thus for any x, y > 0 we always have

(∗) ≤ log n√
n

·
(
xφ(γ) +

y

γ
φ(γ)

)
.

Lemma 3.14 and Lemma 4.4 give

max
1≤k≤n

x =
√
n max

1≤k≤n

∥∥∥u(k)
2 − u∗

2

∥∥∥
∞

≤
√
n

(
max

1≤k≤n

∥∥∥u(k)
2 − u2

∥∥∥+ ∥u2∥∞ + ∥u∗
2∥∞

)
=

√
n ·O (∥u2∥∞)

and

max
1≤k≤n

y = max
1≤k≤n

∥∥∥u(k)
2 − u∗

2

∥∥∥ ≤ max
1≤k≤n

∥∥∥u(k)
2 − u2

∥∥∥+ ∥u2 − u∗
2∥ = O

(
∥u2∥∞ +

1√
log n

)
.

Therefore

max
1≤k≤n

∣∣∣(A−A∗)k·

(
u
(k)
2 − u∗

2

)∣∣∣ = log n√
n

O

(
max

1≤k≤n

{
xφ(γ) +

y

γ
φ(γ)

})
=

log n√
n

O

(√
n ∥u2∥∞ φ(γ) +

∥u2∥∞
γ

φ(γ) + φ(γ)

)
=

log n√
n

O

( √
n

log log n
∥u2∥∞ +

√
log n

log log n
∥u2∥∞ +

1

log log n

)
= O

(
log n

log log n
∥u2∥∞

)
.

Lemma 4.6. There exist C1, C2 > 0 depending on am, bm, ξ such that

P
(
∥A (u2 − u∗

2)∥∞ ≤ C1
log n√

n log log n

)
≥ 1− C2n

−f(ξ;am,bm).

Proof.

∥A (u2 − u∗
2)∥∞ = max

1≤k≤n
|Ak· (u2 − u∗

2)|

≤ max
1≤k≤n

∣∣∣Ak·

(
u2 − u

(k)
2

)∣∣∣+ max
1≤k≤n

∣∣∣Ak·

(
u
(k)
2 − u∗

2

)∣∣∣
≤ max

1≤k≤n
∥A∥2,∞||u2 − u

(k)
2 ∥+ max

1≤k≤n

∣∣∣A∗
k·

(
u
(k)
2 − u∗

2

)∣∣∣ (9)

+ max
1≤k≤n

∣∣∣(A−A∗)k·

(
u
(k)
2 − u∗

2

)∣∣∣
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For the first term of (9), by Lemma 3.5 and 4.4 we have

max
1≤k≤n

∥A∥2,∞||u2 − u
(k)
2 ∥ = ∥A∥2,∞ max

1≤k≤n
∥u2 − u

(k)
2 ∥

≤
(
∥A∗∥2,∞ + ∥A−A∗∥

)
max

1≤k≤n
∥u2 − u

(k)
2 ∥

= O(
√
log n∥u2∥∞).

For the second term of (9), by Lemma 3.14, 4.4, we have

max
1≤k≤n

∣∣∣A∗
k·

(
u
(k)
2 − u∗

2

)∣∣∣ ≤ max
1≤k≤n

∥A∗∥2,∞
∥∥∥u(k)

2 − u∗
2

∥∥∥
≤ ∥A∗∥2,∞

(
max

1≤k≤n

∥∥∥u2 − u
(k)
2

∥∥∥+ ∥u2 − u∗
2∥
)

=
log n√

n
·O
(
∥u2∥∞ +

1√
log n

)
= O

(
log n√

n
∥u2∥∞ +

√
log n√
n

)
.

For the third term of (9), by Lemma 4.5, we have

max
1≤k≤n

∣∣∣(A−A∗)k·

(
u
(k)
2 − u∗

2

)∣∣∣ = O

(
log n

log log n
∥u2∥∞

)
.

Combining the three terms together, we have

∥A (u2 − u∗
2)∥∞ = O

(
log n

log log n
∥u2∥∞

)
.

By definition of u2,
(D −A)u2 = λ2(L)u2

(D − λ2(L)I)u2 = Au2

u2 = (D − λ2(L)I)
−1Au2.

So

∥u2∥∞ = ∥(D − λ2(L)I)
−1Au2∥∞

≤ ∥(D − λ2(L)I)
−1Au∗

2∥∞ + ∥(D − λ2(L)I)
−1A(u2 − u∗

2)∥∞. (10)

For the first term of (10), by Lemma 3.2 and Lemma 3.9 we have

∥(D − λ2(L)I)
−1Au∗

2∥∞ = O
(
∥(D − λ2(L)I)

−1∥∞ · ∥A∥∞ · ∥u∗
2∥∞

)
= O

(∣∣∣∣ 1

dmin − λ2(L)

∣∣∣∣ ∥A∥∞ · ∥u∗
2∥∞

)
= O

(
1

log n
log n

1√
n

)
= O

(
1√
n

)
.

For the second term of (10),

∥(D − λ2(L)I)
−1A(u2 − u∗

2)∥∞ = O(∥(D − λ2(L)I)
−1∥∞ · ∥A(u2 − u∗

2)∥∞)

= O

(∣∣∣∣ 1

dmin − λ2(L)

∣∣∣∣ ∥A(u2 − u∗
2)∥∞

)
= O

(
1

log n

log n

log log n
∥u2∥∞

)
= O

(
∥u2∥∞
log log n

)
.
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Thus

∥u2∥∞ = O

(
1√
n

)
and

∥A (u2 − u∗
2)∥∞ = O

(
log n√

n log logn

)
.

Lemma 4.7. (D−λ2(L)I)
−1Au∗

2 is a good approximation to u2, that is, with probability 1−o(1),

∥u2 − (D − λ2(L)I)
−1Au∗

2∥∞ = o

(
1√
n

)
.

Proof. Note that (D − λ2(L)I)u2 = Au2, thus

∥u2 − (D − λ2(L)I)
−1Au∗

2∥∞ = ∥(D − λ2(L)I)
−1A(u2 − u∗

2)∥∞
≤ ∥(D − λ2(L)I)

−1∥∞ · ∥A(u2 − u∗
2)∥∞. (11)

From Lemma 3.1 and Lemma 3.8, we have dmin ≥ (m − 1)(bm + ϵ) log n and λ2(L) ≤ (m −
1)bm log n+O(log n/n). Thus for the first multiplicative term of (11), we have

∥(D − λ2(L)I)
−1∥∞ = O

(
1

dmin − λ2(L)

)
= O

(
1

log n

)
with high probability.

From Lemma 4.6, for the second multiplicative term of (11), we have

∥A(u2 − u∗
2)∥∞ = O

(
log n√

n log log n

)
= o

(
log n√

n

)
with high probability.

Thus

∥u2 − (D − λ2(L)I)
−1Au∗

2∥∞ = o

(
1√
n

)
.

Lemma 4.8. sgn((D − λ2(L)I)
−1Au∗

2) exactly recovers the HSBM and

∥(D − λ2(L)I)
−1Au∗

2∥∞ = Ω

(
1√
n

)
.

Proof. We have dmax − λ2(L) = O (log n).
For Au∗

2, by Lemma 4.2, when i ≤ n
2 , with probability 1− o(n−1)

(Au∗
2)i =

1√
n

∑
j∈[n]

Aijσ
∗(i)σ∗(j) ≥ ϵ

log n√
n

.

Similarly, when n
2 + 1 ≤ i ≤ n, with probability 1− o(n−1), we have

(Au∗
2)i = − 1√

n

∑
j∈[n]

Aijσ
∗(i)σ∗(j) ≤ −ϵ

log n√
n

.

Thus, with probability 1− o(n−1), for some constant ϵ1, ϵ2, η1 > 0, we have∣∣((D − λ2(L)I)
−1Au∗

2)i
∣∣ ≥ ∣∣∣∣ 1

dmax − λ2(L)
(Au∗

2)i

∣∣∣∣ = ∣∣∣∣ ϵ1
log n

· ϵ2 log n√
n

∣∣∣∣ = η1√
n

where η1 = |ϵ1ϵ2|. Therefore,

∥(D − λ2(L)I)
−1Au∗

2∥∞ = Ω

(
1√
n

)
.
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5 Conclusion

In this thesis, we proved that when above the min-bisection threshold, we can use the sign of the
eigenvector, u2, corresponding to the second smallest eigenvalue of the combinatorial Laplacian,
λ2(L), to exactly recover the m-uniform binary hypergraph stochastic block model. First, we
prove that the eigenvalue λ2(L) is well separated from λ1 = 0 and λ3 with high probability to
ensure that u2 can be computed accurately. Second, we approximate u2 with (D−λ2(L)I)

−1Au∗
2.

By showing that the entrywise error between u2 and the appoximation is small, and that the
approximation can exactly recover the HSBM, we conclude that u2 of L can exactly recover the
HSBM. One potential future work is to extend the result to non-uniform HSBM, which has a more
complex hyperedge dependency structure. Note that our result is valid down to the min-bisection
threshold. While [Wan23] showed that below the information-theoretic threshold, exact recovery
is not achievable for binary HSBM, whether spectral algorithm or semi-definite programming can
achieve exact recovery when in-between these thresholds remains an open problem.
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