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Abstract

We introduce the Markoff equation and a group action that acts on the set of solution

of the Markoff equation. We state the conjecture of Bourgain, Gamburd, and Sarnak

regarding the Z/pZ solution of Markoff equation, their progress, and the recent result by

Chen that reduce the conjecture to a finite computation. Then we explain the connection

of Markoff equation with character variety. Finally, we develop some algebraic geometry

machinery necessary to understand Chen’s work.
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1 Introduction

1.1 Markoff Equation and Markoff Triples

Definition 1.1.1. The Markoff equation is the equation

x2 + y2 + z2 − 3xyz = 0

A positive integer solution of the Markoff equation is called a Markoff triple.

Remark 1.1.2. The Markoff equation is symmetric in variable x, y and z, so permuting

a Markoff triple gives another Markoff triple. Also, given a Markoff triple (x0, y0, z0),

viewing the Markoff equation as a degree 2 polynomial in variable z

z2 − (3xy)z + x2 + y2 = 0

we see that (x0, y0, 3x0y0−z0) is another Markoff triple because the solution of a quadratic

equation sum to the coefficients of the linear term up to a minus sign. Let Γ ⊆ Aut(A3)

be the subgroup of automorphisms of affine 3-space generated by permuting x, y, and

z, and the (x, y, z) 7→ (x, y, 3xy − z). The move (x, y, z) 7→ (x, y, 3xy − z) is called the

Vieta involution.

Then the group Γ acts on the set of Markoff triples and Markoff showed, in his 1879

paper [Mar79], that the action of Γ on the set of Markoff triple is transitive.

Instead of integer solution, we can also consider the solution of the Markoff equation

in the field Z/pZ. In 2015, Bourgain, Gamburd, and Sarnak studied this question and

conjectured that the action of Γ on the nontrivial Z/pZ-solution (solutions that are

not (0, 0, 0) ∈ A3
Z/pZ) is also transitive. To support their claim, Bourgain, Gamburd,

and Sarnak established their conjecture for all but a sparse, but infinite, set of primes.

Moreover, for sufficiently large prime, there always exist a large orbit.

Definition 1.1.3. Let p be a prime and Γ ⊆ Aut(A3
Z/pZ) = Aut((Z/pZ)[x, y, z]) be the

subgroup generated by permuting x, y, z and (x, y, z) 7→ (x, y, 3xy − z). Let

X(p) = {(x, y, z) ∈ A3
Z/pZ | x2 + y2 + z2 − 3xyz = 0}

and X∗(p) = X(p) \ {(0, 0, 0)}. Let Ebgs = {p prime | Γ ↷ X∗(p) is not transitive} be

the set of exceptional prime.

Conjecture 1.1.4. [BGS15] For a prime p, Γ acts on X(p) with two orbits: (0, 0, 0) and

X∗(p).

Theorem 1.1.5. [BGS15] For all ε > 0, |{p ∈ Ebgs | p ≤ x}| = O(xε).
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Theorem 1.1.6. [BGS15] For all ε > 0 and there exist sufficiently large N ∈ N such

that p ≥ N implies, there exist an orbit C(p) of Γ ↷ X∗(p) such that

|X∗(p) \ C(p)| ≤ pε

Remark 1.1.7. In 2020, Chen proved a divisibility theorem on the cardinalities of Nielsen

equivalence classes of generating pairs of finite groups. As a corollary, p divides the size

of every Γ-orbit in X∗(p). Combined with the result of Bourgain, Gamburd, and Sarnak,

this establishes conjecture 1.1.4 for all but finitely many primes, reducing the conjecture

to a finite computation.

Theorem 1.1.8. [Che21] For all prime p, p divided every Γ-orbit of X∗(p).

1.2 Representation Variety and Character Variety

Definition 1.2.1. Let Γ be a group. Define A(Γ, SL2), called the universal represen-

tation algebra, by

A(Γ, SL2) = Z[aij(γ) for γ ∈ Γ and i, j ∈ {1, 2}]/I

where I is the ideal

I =

〈
aij(e)− δij, aij(γδ)−

∑
k aik(γ)akj(δ),

det(σ(γ))− 1 for γ ∈ Γ and i, j ∈ {1, 2} and γ, δ ∈ Γ

〉
The map σ : Γ → SL2(A(Γ, SL2)) defined by γ 7→ σ(γ) is a representation of Γ is called

the universal representation of Γ in SL2. The SL2-representation variety of Γ is

the affine scheme Spec(A(Γ, SL2)).

Definition 1.2.2. Let Γ be a group. Define R(Γ, SL2), called the universal character

ring, by

R(Γ, SL2) =
Z[tγ, γ ∈ Γ]

⟨te − 2, tγtδ − tγδ − tγ−1δ⟩
The SL2-character variety of Γ is the affine scheme Spec(R(Γ, SL2)).

Remark 1.2.3. Since the representation variety and character variety are affine schemes,

we can view them as functors from the category of schemes to the category of sets, or

functor from the category of rings to the category of sets.

Remark 1.2.4. The relation s(γ)s(δ)− s(γδ)− s(γ−1δ) in the denominator of the defi-

nition of R(Γ, SL2) (definition 1.2.2) is known as the Fricke identity which is satisfied

by the trace of two matrices in SL2. Suppose M,N ∈ SL2(R) for some ring R, by Cayley
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Hamilton

M2 − tr(M)M + det(M)I2 = 0

MN + det(M)M−1N = tr(M)N

tr(MN) + det(M) tr
(
M−1N

)
= tr(M) tr(N)

tr(M) tr(N)− tr(MN)− tr
(
M−1N

)
= 0

Theorem 1.2.5. (Fricke) Let Π = ⟨a, b⟩ be a free group generated by two elements.

Then
Z[tγ, γ ∈ Π]

te − 2, tγtδ − tγδ − tγ−1δ

≃ Z[ta, tb, tab]

This result is due to Fricke [Fri96], a proof can be found in [Gol05] and [Che21, Section

6.2]. In particular, it shows Ch(Π, SL2) ≃ Spec(Z[ta, tb, tab]) ≃ A3.

1.3 Orientable Surface and Mapping Class Group

Definition 1.3.1. A surface is a 2-dimensional manifold. A closed surface is a compact

surface with no boundary.

Theorem 1.3.2. (Classification of closed surfaces) Any connected closed surface is home-

omorphic to a surface in one of the following 3 families:

(1) the 2-sphere S2,

(2) the orientable surface of genus g, for some g ≥ 1, denoted Σg,

(3) the non-orientable surface of genus h, for some h ≥ 1, denoted Nh.

Remark 1.3.3. From the classification of closed surfaces, we can obtain a classifica-

tion of orientable compact surfaces with boundary. Given an orientable closed surface,

removing finitely many open discs will give an orientable compact surface with bound-

ary. Conversely, given an orientable compact surface with boundary, the boundary is

a 1-dimensional manifold, which must be a disjoint union of circles, implying it comes

from an orientable closed surface, with some open discs removed. Moreover, the precise

location of the removed disc does not matter because the classification is up to homeo-

morphism.

Therefore, an orientable compact surface with boundary is determined, up to homeo-

morphism, by two invariants, the number of genus, and the number of discs removed. We

call surface with n discs removed n-puntured. We denote the n-punctured orientable

surface of genus g by Σg,n

Here, we are interested in the one-punctured torus Σ1,1. Σ1,1 can be visualized as

follows
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Figure 1.
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Figure 2.

Denote the fundamental group of Σ1,1 by Π1,1. We see that Π1,1 is isomorphic to the

free group generated by a, b by deformation retracting Figure 2 to the four edges of the

square, and applying van Kampen’s theorem. The class of the boundary curve in Π1,1

is the commutator [a, b] = aba−1b−1. By theorem 1.2.5, we see that Ch(Π1,1, SL2) ≃
Spec(Z[ta, tb, tab]) ≃ A3.

From now on, we write Ch1,1 for Ch(Π1,1, SL2).

Remark 1.3.4. Let Π = ⟨a, b⟩ be a free group generated by two elements and R be a

ring. Suppose φ : Π → SL2(R) be a group homomorphism. Write

x = trφ(a)

y = trφ(b)

z = trφ(ab)

By Cayley Hamilton, for M ∈ GL2(R)

M2 − tr(M)M + det(M)I2 = 0

M + det(M)M−1 = tr(M)I2

tr(M) + det(M) tr
(
M−1

)
= 2 tr(M)

tr(M) = det(M) tr
(
M−1

)
φ(a), φ(b), φ(ab) ∈ SL2(R) implies detφ(a) = detφ(b) = detφ(ab) = 1 which implies

x = trφ(a) = trφ(a−1)

y = trφ(b) = trφ(b−1)

z = trφ(ab) = trφ(b−1a−1)

By Cayley Hamilton again, for M,N ∈ GL2(R)

M2 − tr(M)M + det(M)I2 = 0

MN + det(M)N−1M = tr(M)N

tr(MN) + det(M) tr
(
N−1N

)
= tr(M) tr(N)
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It follows that

trφ(a2) + 2 = trφ(a)2 = x2

trφ(b2) + 2 = trφ(b)2 = y2

trφ(a−1b) = trφ(a−1) trφ(b)− trφ(ab) = xy − z

trφ(aba−1b) = trφ(ab) trφ(a−1b)− tr
(
abb−1a

)
= z(xy − z)− x2 + 2 = xyz − z2 − x2 + 2

trφ(aba−1b−1) = trφ(aba−1) trφ(b−1)− tr
(
aba−1b

)
= y2 − (xyz − z2 − x2 + 2) = x2 + y2 + z2 − xyz − 2

So in Ch1,1, t[a,b] = taba−1b−1 = t2a + t2b + t2ab − tatbtab − 2.

Definition 1.3.5. Let S be an orientable surface with boundary ∂S. Themapping class

group of S, denoted by MCG(S) is the group of orientation preserving automorphism

of S fixing ∂S, modulo the equivalence relation given by homotopy.

Remark 1.3.6. Let (S, x) be an orientable surface with boundary. An element of the

mapping class group MCG(S) is an equivalence class of orientation preserving automor-

phism that fixes the boundary. Each automorphism φ ∈ Aut(S) induces an automor-

phism of the fundamental group π1(S, x) after fixing a path from x to φ(x) Homotopic

automorphism of the surface induces the same automorphism on the fundamental group.

Therefore, an element MCG(S) induces an automorphism of the fundamental group since

every representative induce the same automorphism of the fundamental group. Thus, we

get an action of the mapping class group on the fundamental group MCG(S) ↷ π1(S, x).

Then the mapping class group act on the character variety MCG(S) ↷ Ch(π1(S, x), SL2)

by permuting the variable.

Remark 1.3.7. Let S be an orientable surface with boundary. Examples of automor-

phism of S that fix the boundary of S are Dehn twists. Let γ be a simple closed curve

in S. A Dehn twist around γ is defined to be removing a small tabular neighborhood of

γ, viewing it as an annulus, twisting one end by 2π radian and fixing the other end glue

back to S.

Theorem 1.3.8. ([FM12, Theorem 4.9, Theorem 4.13, Theorem 4.14]) MCG(Σg,n) is

generated by Dehn twists.

Remark 1.3.9. By considering explicit generator of MCG(Σ1,1) and consider its action

on Ch1,1(Z/pZ) ≃ (Z/pZ)3 are composition of permuting the variables and Vieta involu-

tion. Therefore, MCG(Σ1,1) can be viewed as a subgroup of Γ as in remark 1.1.2. More-

over, the class of the boundary curve in the fundamental group is conjugated after apply-

ing an automorphism of the surface that fix the boundary. So t[a,b] = t2a+t
2
b+t

2
ab−tatbtab−2

in Ch1,1 is invariant under the action of MCG(Σ1,1).
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1.4 Connections with Markoff Triples

Definition 1.4.1. Define the modified character variety, denoted by Ch1,1;k, by

defining Ch1,1;−2(R) ⊆ Ch1,1(R) ≃ A3
R to be the set of points (x, y, z) ∈ A3

R such that

x2 + y2 + z2 − xyz − 2 = k. Define the relative modified character variety, denoted

by Ch•
1,1;−2(R), by Ch1,1;−2 \{(0, 0)}.

Remark 1.4.2. Then Ch1,1;−2(Z/pZ) is the set of points (x, y, z) ∈ (Z/pZ)3 such that

x2 + y2 + z2 − xyz = 0. Then the action of MCG(Σ1,1) on Ch1,1(Z/pZ) factors through
to an action of Ch1,1;−2(Z/pZ) because t[a,b] is invariant under the action of MCG(Σ1,1).

We also get an action MCG(Σ1,1) ↷ Ch•
1,1;−2(Z/pZ).

Remark 1.4.3. There exists a bijection between the integer solution of

x2 + y2 + z2 − 3xyz = 0 and x2 + y2 + z2 − xyz = 0

given by (x0, y0, z0) 7→ (3x0, 3y0, 3z0). This bijection continue to hold in Z/pZ for p ̸= 3.

Under this bijection, we get an isomorphism Ch•
1,1;−2(Z/pZ) ≃ X∗(p). So to show the

action of Γ on X∗(p) is transitive (definition 1.1.3), it suffices to show MCG(Σ1,1) ↷
Ch•

1,1;−2(Z/pZ) is transitive.

MCG(Σ1,1) Ch•
1,1;−2(Z/pZ)

Γ X∗(p)

↷

≃

↷

Theorem 1.4.4. [Che21] For all prime p, p divided every Γ-orbit of X∗(p).

Remark 1.4.5. Chen’s method involves heavy algebraic geometry machinery like alge-

braic space and algebraic stack. Motivated by the above, I use the Stacks Project as the

main reference to study algebraic space and algebraic stack in the rest of this exposition.
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2 Stack and Stack in Groupoids

2.1 Fibered Category

Definition 2.1.1. [Sta24, 00VH] A site is a category C with a set Cov(C), where an

element of Cov(C) is a family of morphisms in C with fixed target {Ui → U}i∈I , called
coverings of C, satisfying the following conditions

(1) If V → U is an isomorphism, then {V → U} ∈ Cov(C).

(2) If {Ui → U}i∈I ∈ Cov(C) and for each i ∈ I we have {Vij → Ui}j∈Ji ∈ Cov(C), then

{Vij → U}i∈I,j∈Ji ∈ Cov(C).

(3) If {Ui → U}i∈I ∈ Cov(C) and V → U is a morphism of C, then Ui ×U V exists for

all i and {Ui ×U V → V }i∈I ∈ Cov(C).

Definition 2.1.2. Let C be a category, p : S → C be a functor (We say S is a category

over C), and U ∈ Ob(C) be an object in C.

(1) [Sta24, 02XH] The fiber category over U , denoted by SU , is the category with

objects

Ob(SU) = {x ∈ Ob(S) | p(x) = U}

and morphisms

MorSU (x, y) = {φ ∈ MorS(x, y) | p(φ) = idU}

(2) [Sta24, 001G] The category of object over U , denoted by C/U , is the category

with objects

Ob(C/U) = {V → U morphism in C with target U}

and morphisms

MorC/U(V
φ→ U,W

ψ→ U) = {χ ∈ MorC(V,W ) | ψ ◦ χ = φ}

(3) [Sta24, 00Z0] Assume that C is also a site. The localization of the site C at the

object U is the site C/U where a family of morphism {Vi → V }i∈I of objects over

U is a covering of C/U if and only if it is a covering in C.

Definition 2.1.3. [Sta24, 02XM] Let p : S → C be a functor. S is a fibered category

over C if for every U ∈ Ob(C), every x ∈ Ob(SU), and every f : V → U morphism in C

with target U , there exist lift f ∗x → x of f satisfying the following universal property:

for every z ∈ Ob(S) with morphisms φ : z → x and g : p(z) → V such that p(φ) = f ◦ g,

7



there exist a unique lift z → f ∗x of p(z) → V such that the following diagram commute

z

f ∗x x

p(z) V U

∃!

φ

p

p p

g f

Remark 2.1.4. f ∗x in definition 2.1.3 can be thought of as the “fiber product of V and

x over U” or “base change of x via V → U”. By a standard argument f ∗x is unique up

to unique isomorphism: suppose y, z both satisfy the universal property defining f ∗ x,
then the unique lifts y → z and z → y of idV are inverses of each other

z y

y z

z x y x

V V V U V V V U
idid f

∃!

∃!

id id f

id ∃!

∃!

id

Example 2.1.5. [Sta24, 02XV] Let C be a category, and F : Copp → Categories be

a contravariant functor. For a morphism f : U → V , we write f ∗ for the morphism

(covariant functor) F (f) : F (V ) → F (U). We construct a fibered category SF over C as

follows.

Ob(SF ) = {(U, x) | U ∈ Ob(C), x ∈ Ob(F (U))}

and for (U, x), (V, y) ∈ Ob(SF )

MorSF ((V, y), (U, x)) = {(f, φ) | f ∈ MorC(V, U), φ ∈ MorF (V )(y, f
∗x)}

=
⊔

f∈MorC(U,V )

MorF (V )(y, f
∗x)

which is well-defined because F (f) : F (U) → F (V ) and f ∗x = F (f)(x) ∈ F (V ).

Suppose (U, x), (V, y), (W, z) ∈ Ob(SF ) with morphisms (f, φ) : (V, y) → (U, x) and

(g, ψ) : (W, z) → (V, y), define the composition by (f, φ) ◦ (g, ψ) = (f ◦ g, g∗φ ◦ ψ)

(W, z) (V, y) (U, x)
(g,ψ)

(f◦g,g∗φ◦ψ)

(f,φ)

which is well-defined because ψ : z → g∗y, φ : y → f ∗x, and g∗φ : g∗y → g∗f ∗x = (f◦g)∗x
(g∗ : F (V ) → F (W ) is a covariant functor). The identity morphism for an object

(U, x) ∈ Ob(SF ) is (idU , idx) and associativity of composition holds. So SF is a category.

Define covariant functor pF : SF → C by pF (U, x) = U and pF (f, φ) = f . To verify SF

is a fibered category over C, it suffices to show given f : U → V , and (U, x) ∈ Ob(SF ),
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there exist an object in (SF )V satisfying the universal property in definition 2.1.3.

We show that (V, f ∗x) ∈ Ob(SF ) together with the map (f, idf∗x) : (V, f
∗x) → (U, x)

satisfies the universal property. Let (W, z) ∈ Ob(SF ) be an object with morphisms

g : W → V and (h, ψ) : (W, z) → (U, x) such that pF (h, ψ) = f ◦ g

(W, z)

(V, f ∗x) (U, x)

W V U

(h,ψ)

pF
(f,idf∗x)

pF pF

g f

Then h = pF (h, ψ) = f ◦ g. (g, ψ) : (W, z) → (V, f ∗x) make the diagram commute

because pF (g, ψ) = g and by definition of composition

(f, idf∗x) ◦ (g, ψ) = (f ◦ g, g∗ idf∗x ◦ψ) = (f ◦ g, idg∗f∗x ◦ψ) = (f ◦ g, ψ)

where the second equality hold because g∗ is a functor

(W, z)

(V, f ∗x) (U, x)

W V U

(g,ψ)

(h,ψ)=(f◦g,ψ)

pF
(f,idf∗x)

pF pF

g f

Suppose (g′, ψ′) : (W, z) → (V, f ∗x) also make the diagram commute, then pF (g
′, ψ) = g

implies g = g′. By definition of composition in SF , the diagram commute implies ψ = ψ′

because

(f ◦ g, ψ) = (f, idf∗x) ◦ (g′, ψ′) = (f, idf∗x) ◦ (g, ψ′) = (f ◦ g, g∗ idf∗x ◦ψ′) = (f ◦ g, ψ′)

So SF is a fibered category over C.

2.2 Stack

The goal of this section is to define a stack over a site.

Definition 2.2.1. [Sta24, 02XN] Assume p : S → C is a fibered category. A choice of

pullbacks for p : S → C is given by a choice of morphism f ∗x→ x lying over f satisfying

the universal property in definition 2.1.3 for any morphism f : V → U of C and any

x ∈ Ob(SU).

Definition 2.2.2. Let C be a category.

(1) [Sta24, 02X6] A presheaf on C is a contravariant functor F from C to Sets, the

9



category of sets. A morphism of presheaves is a natural transformation. Denote

the category of presheaves on C by PSh(C).

(2) [Sta24, 00V8] A presheaf F is said to be a subpresheaf of another presheaf G if

for every U ∈ Ob(C), F (U) ⊆ G(U) and for every morphism φ : V → U in C,

F (φ) = G(φ)|F (U).

Definition 2.2.3. [Sta24, 00VM] Let C be a site, and let F be a presheaf on C. Let

{Ui → U}i∈I be an element of Cov(C). By condition (3) in definition 2.1.1, all fiber

product Ui ×U Uj exist in C. Then we have the following maps

Ui ×U Uj F (Ui ×U Uj)

Ui Uj F (Ui) F (Uj)

U F (U)

pr
(i,j)
i

pr
(i,j)
j

F
(
pr

(i,j)
i

)
F
(
pr

(i,j)
j

)

For each i ∈ I, define the following two functions

pr∗0 :
∏
i∈I

F (Ui) →
∏

(j,k)∈I2
F (Uj ×U Uk)

(si)i∈I 7→
(
F
(
pr

(j,k)
j

)
(sj)

)
(j,k)∈I2

pr∗1 :
∏
i∈I

F (Ui) →
∏

(j,k)∈I2
F (Uj ×U Uk)

(si)i∈I 7→
(
F
(
pr

(j,k)
k

)
(sk)

)
(j,k)∈I2

F is a sheaf if for every covering {Ui → U}i∈I ∈ Cov(C), the diagram

F (U)
∏
i∈I

F (Ui)
∏

(j,k)∈I2
F (Uj ×U Uk)

pr∗0

pr∗1

represents the first arrow as the equalizer of pr∗0 and pr∗1. Or equivalently, the image of

F (U) in
∏

i∈I F (Ui) is equal to{
(si)i∈I ∈

∏
i∈I

F (Ui)

∣∣∣∣∣ pr∗0((si)i∈I) = pr∗1((si)i∈I)

}

Definition 2.2.4. [Sta24, 02ZB] Let p : S → C be a fibered category over a category C.

Given U ∈ ObC and x, y ∈ Ob(SU), the presheaf of morphisms from x to y is the

presheaf Mor(x, y) on C/U defined by

(f : V → U) 7−→ MorSV (f
∗x, f ∗y)

(The lemma below shows this is in fact a presheaf) The presheaf of isomorphisms

from x to y is the subpresheaf Isom(x, y) of the presheaf Mor(x, y) on C/U defined by

(f : V → U) 7−→ IsomSV (f
∗x, f ∗y)

Lemma 2.2.5. [Sta24, 026A] Let p : S → C be a fibered category over a category C.

Given U ∈ ObC and x, y ∈ Ob(SU), then Mor(x, y) is a presheaf on C/U
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Proof. To simplify notation, denote Mor(x, y) by Mx,y. It suffices to show Mx,y is a

contravariant functor from C/U to Sets. Given a morphism g : V1 → V2 in C/U where

f1 : V1 → U and f2 : V2 → U , define Mx,y(g) : MorSV2 (f
∗
2x, f

∗
2 y) → MorSV1 (f

∗
1x, f

∗
1 y) as

follows: given φ ∈ MorSV2 (f∗2 x,f∗2 y) let Mx,y(g)(φ) : f ∗
1x → f ∗

1 y be the unique morphism

induced by the universal property of f ∗
1 y and the morphisms idV1 and f ∗

1x
f∗g−→ f ∗

2x
φ−→

f ∗
2 y −→ y

f ∗
1x f ∗

2x x

f ∗
1 y f ∗

2 y y

V1 V2 U
f2g

f1

f∗2 g

f∗2 g

φ

Applying in universal properties, we see if (f : V → U) ∈ Ob(C/U), then Mx,y(idV ) =

idMx,y(V ), and if g1 : V1 → V2 and g2 : V2 → V3 are morphisms in C/U where fi : Vi → U

for i = 1, 2, 3, then Mx,y(g2 ◦ g1) =Mx,y(g2) ◦Mx,y(g1).

Definition 2.2.6. [Sta24, 026B] Let p : S → C be a fibered category over a category C.

Make a choice of pullbacks. Let U = {fi : Ui → U}i∈I be a family of morphisms of C.

Assume all fiber products Ui ×U Uj and Ui ×U Uj ×U Uk exists.

(1) A descent datum (Xi, φij) in S relative to the family U = {fi : Ui → U}i∈I is

given by an object Xi of SUi
for each i ∈ I, an isomorphism φij : pr

∗
0Xi → pr∗1Xj

in SUi×UUj
in for each pair (i, j) ∈ I2 such that for every triple (i, j, k) ∈ I3, the

following diagram in the category SUi×UUj×UUk
commutes

pr∗0Xi pr∗2Xk

pr∗1Xj

pr∗01 φij pr∗02 φjk

pr02∗ φik

(2) A morphism of descent datum ψ : (Xi, φij) → (X ′
i, φ

′
ij) is given by a family

ψ = (ψi)i∈I of morphism ψi : Xi → X ′
i in SUi

such that for every pair (i, j) ∈ I2,

the following diagram in the category SUi×UUj
commutes

pr∗0Xi pr∗1Xj

pr∗0X
′
i pr∗1Xj

φij

φ′
ij

pr∗0 ψi pr∗0 ψj

(3) The category of descent data relative to U is denoted by DD(U).

Lemma 2.2.7. Let p : S → C be a fibered category and {fi : Ui → U}i∈I a family

of morphisms. Assume all fiber products Ui ×U Uj and Ui ×U Uj ×U Uk exists. Let
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X ∈ Ob(SU). Then (f ∗
i X, (fi × fj)

∗ idX) is a descent datum in S relative to the family

{fi : Ui → U}i∈I .

Proof. By definition of fibered category, f ∗
i X ∈ Ob(SU). For each pair (i, j) ∈ I2, the

following diagram commute

Ui

Ui ×U Uj U

Uj

fi×fj

pr0

pr1 fj

fi

So pr∗0 f
∗
i X ≃ (fi ◦ pr0)∗X ≃ (fi × fj)

∗X ≃ (fj ◦ pr1)∗X ≃ pr∗1 f
∗
jX where isomorphisms

here are unique in the sense of remark 2.1.4. Then (fi × fj)
∗ idX defines an isomorphism

pr∗0 f
∗
i X → pr∗1 f

∗
jX. For each triple (i, j, k) ∈ I3, the following diagram commute

pr∗0 f
∗
i X pr∗2 f

∗
kX

pr∗1 f
∗
jX

pr∗01(fi×fj)∗ idX pr∗12(fj×fk)∗ idX

pr∗02(fi×fk)∗ idX

because each object is isomorphic to (fi×fj×fk)∗X. So (f ∗
i X, (fi×fj)∗ idX) is a descent

datum relative to the family {fi : Ui → U}i∈I .

Definition 2.2.8. [Sta24, 026E] Let p : S → C be a fibered category over a category C .

Make a choice of pullbacks. Let U = {fi : Ui → U}i∈I be a family of morphisms of C.

Assume all fiber products Ui ×U Uj and Ui ×U Uj ×U Uk exists.

(1) Given an objectX of SU , the trivial descent datum is the descent datum (X, idX)

relative to the family {idU : U → U}.

(2) Given an object X of SU , the canonical descent datum relative to {fi : Ui →
U}i∈I is the (f ∗

i X, (fi × fj)
∗ idX). This descent datum is denoted by (f ∗

i X, can).

(3) A descent datum (Xi, φij) relative to {fi : Ui → U}i∈I is effective if there exist

X ∈ Ob(SU) such that (Xi, φij) is isomorphic to (f ∗
i X, can) in the category DD(U)

of descent datum.

Definition 2.2.9. [Sta24, 026F] Let C be a site. A stack over C is a category p : S → C

over C satisfying the following conditions

(1) p : S → C is a fibered category,

(2) for any U ∈ Ob(C) and for any x, y ∈ SU , the presheaf Mor(x, y) is a sheaf on the

site C/U , and
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(3) for any covering U = {Ui → U} in C, all descent datum in S relative to U is effective.

2.3 Stack in Groupoids

The goal of this section is to define a stack in groupoids over a site.

Definition 2.3.1. [Sta24, 0018] A groupoid is a category where every morphism is an

isomorphism.

Definition 2.3.2. [Sta24, 003S] Let p : S → C be a functor. S is fibered in groupoids

over C if

(1) For every morphism f : V → U in C and every x ∈ SU , there exist a lift φ : y → x

of f :

y x

V U

p

f

∃φ

pp

(2) For every pair of morphism φ : y → x, ψ : z → x and every morphism f : p(z) →
p(y) such that p(φ) ◦ f = p(ψ), there exist a unique lift χ : z → y of f such that

φ ◦ χ = ψ:

y z

x

p(y) p(z)

p(x)

φ ψ

p(φ) p(ψ)

∃!χ

f

Lemma 2.3.3. [Sta24, 003V] Let p : S → C be a functor. The following are equivalent

(1) S is fibered in groupoids over C.

(2) S is a fibered category over C and for each U ∈ Ob(C), the fiber category SU is a

groupoid.

Proof. (1) =⇒ (2) Suppose S is fibered in groupoids over C.

(S is a fibered category over C): Let U ∈ Ob(C), x ∈ SU , and f : V → U be a

morphism in C. Then the map φ : y → x given by condition (1) in definition 2.3.2 is the

desired morphism in definition 2.1.3 because given z ∈ Ob(S) with morphism z → x and

g : p(z) → V , the unique lift of g given by condition (2) in definition 2.3.2 in groupoids

13



is a morphism z → y making the following diagram commute

z

y x

p(z) V U

pp

f

p

g

(Each fiber category is a groupoid): Let U ∈ Ob(C), x, y ∈ Ob(SU), and f ∈
MorSU (x, y). It suffices to show f is an isomorphism, i.e., f have a two-sided inverse.

Condition (2) in definition 2.3.2 induces unique morphisms g ∈ MorSU (y, x) and h ∈
MorSU (x, y) as follows

x y y x

y x

U U U U

U U

f id

idid

∃!g

g id

id id

∃!h

id id

Then f ◦ g = idy and g ◦ h = idx. g is in fact a two-sided inverse of f because f = h:

f = f ◦ idx = f ◦ (g ◦ h) = (f ◦ g) ◦ h = idy ◦h = h

(2) =⇒ (1) Suppose S is a fibered category over C and each fiber category is a

groupoid. Condition 1 in the definition of fibered in groupoids is automatically sat-

isfied by S being a fibered category over C. To verify condition 2 in definition 2.3.2,

suppose the following commutative diagram is given

y z

x

p(y) p(z)

p(x)

φ ψ

p(φ) p(ψ)

f

it suffices to show ∃!z → y making the entire diagram commute. Since S is a fibered

category over C, there exists p(φ)∗y ∈ Sp(y) with a lift of p(φ), unique lift i : y → p(φ)∗y
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of idp(y) and unique lift j : z → p(φ)∗y of f such that the following diagram commute

p(φ)∗x

y z

p(y) x

p(y) p(z)

p(x)

φ ψ

p(φ) p(ψ)

f

∃!i ∃!j

p(φ)

i is a morphism in Sp(y) which is a groupoid by assumption. Then i−1 exist and i−1 ◦ j :
z → y is a lift of f . Uniqueness of i−1 ◦ j follows from remark 2.1.4.

Example 2.3.4. [Sta24, 0049] Let C be a category, and F : Copp → Groupoids be a con-

travariant functor. For a morphism f : U → V , we write f ∗ for the morphism (covariant

functor) F (f) : F (V ) → F (U). We construct a category SF fibered in groupoids over C

as follows.

Ob(SF ) = {(U, x) | U ∈ Ob(C), x ∈ Ob(F (U))}

and for (U, x), (V, y) ∈ Ob(SF )

MorSF ((V, y), (U, x)) = {(f, φ) | f ∈ MorC(V, U), φ ∈ MorF (V )(y, f
∗x)}

=
⊔

f∈MorC(U,V )

MorF (V )(y, f
∗x)

which is well-defined because F (f) : F (U) → F (V ) and f ∗x = F (f)(x) ∈ F (V ).

Suppose (U, x), (V, y), (W, z) ∈ Ob(SF ) with morphisms (f, φ) : (V, y) → (U, x) and

(g, ψ) : (W, z) → (V, y), define the composition by (f, φ) ◦ (g, ψ) = (f ◦ g, g∗φ ◦ ψ)

(W, z) (V, y) (U, x)
(g,ψ)

(f◦g,g∗φ◦ψ)

(f,φ)

which is well-defined because ψ : z → g∗y, φ : y → f ∗x, and g∗φ : g∗y → g∗f ∗x = (f◦g)∗x
(g∗ : F (V ) → F (W ) is a covariant functor). The identity morphism for an object

(U, x) ∈ Ob(SF ) is (idU , idx) and associativity of composition holds. So SF is a category.

Define covariant functor pF : SF → C by pF (U, x) = U and pF (f, φ) = f . To verify

SF is a category fibered in groupoids over C, it suffices to show it is a fibered category

over C and each fiber category is a groupoid by lemma 2.3.3. By example 2.1.5, SF is a

fibered category over C. So it remains to show for each fiber category is a groupoid. Let

U ∈ Ob(C), by definition of the functor F

Ob((SF )U) = {(U, x) | x ∈ F (U)}
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and Mor(SF )U ((U, y), (U, x)) = {(idU , φ) | φ ∈ MorF (U)(y, x)}. Since F (U) is a groupoid,

it follows that the inverse of a morphism (idU , φ) in Mor(SF )U is (idU , φ
−1). Then (SF )U

is a groupoid because every morphism in (SF )U is an isomorphism.

Definition 2.3.5. [Sta24, 02Y0] A discrete category is a category where the only

morphisms are the identity morphisms.

Definition 2.3.6. [Sta24, 0043] Let p : S → C be a functor. S is fibered in sets over C

if S is fibered in groupoids over C and all fiber category over C are discrete.

Remark 2.3.7. A discrete category is a groupoid because identity morphism is isomor-

phism. The data of a discrete category is no more than its collection of objects. So we

may view a set as a discrete category, and therefore a groupoid.

Example 2.3.8. [Sta24, 0049] Let C be a category, and F : Copp → Sets be a con-

travariant functor. For a morphism f : U → V , we write f ∗ for the morphism (covariant

functor) F (f) : F (V ) → F (U). We construct a category SF fibered in sets over C as

follows.

Ob(SF ) = {(U, x) | U ∈ Ob(C), x ∈ F (U)}

and for (U, x), (V, y) ∈ Ob(SF )

MorSF ((V, y), (U, x)) = {f ∈ MorC(V, U) | f ∗x = y}

The identity morphism for an object (U, x) ∈ Ob(SF ) is idU and associativity of compo-

sition holds. So SF is a category.

Define covariant functor pF : SF → C by pF (U, x) = U and pF (f) = f . Viewing F (U)

as a groupoid as in remark 2.3.7. SF is a fibered in groupoid by example 2.3.4. Then

SF is fibered in sets because each fiber category is F (U), which is a set, and therefore

discrete.

Remark 2.3.9. The category SF in example 2.3.8 is known as the category of elements

of the functor F : C → Sets. It will be used to define what it means for a category over

the category of schemes to be representable by an algebraic space (definition 4.4.2)

Definition 2.3.10. [Sta24, 02ZI] A stack in groupoids over a site C is a category

p : S → C over C such that

(1) p : S → C is fibered in groupoids over C.

(2) For every U ∈ Ob(C) and every x, y ∈ Ob(SU), the presheaf Isom(x, y) is a sheaf

on the site C/U .

(3) For every covering U = {Ui → U} in C, all descent data (xi, φij) for U are effective.
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3 Smooth and Étale Maps

3.1 Homological Algebra

Definition 3.1.1. A categoryA is a preadditive category if each morphism set MorA(x, y)

is endowed with the structure of an abelian group such that the compositions

Mor(x, y)×Mor(y, z) −→ Mor(x, z)

are bilinear, i.e., if f1, f2 ∈ Mor(x, y), g1, g2 ∈ Mor(y, z), then

(g1 + g2) ◦ (f1 + f2) = g1 ◦ f1 + g1 ◦ f2 + g2 ◦ f1 + g2 ◦ f2

Sometimes a preadditive category is also called an ab-enriched category or a ringoid.

A functor F : A → B between two preadditive category is additive if for all x, y ∈ Ob(A),

F : MorA(x, y) → MorB(F (x), F (y)) is an abelian group homomorphism.

Joke 3.1.2.

• A monoid can be viewed as a one object category.

• A group can be viewed as a one object category such that every morphism is an

isomorphism.

• A ring can be viewed as a one object preadditive category.

• A preadditive category with potentially more than one object is called a ringoid.

• A category where every morphism is an isomorphism with potentially more than

one object is called a groupoid.

One object Multiple objects

No condition on morphisms Monoid ?

Every morphism is an isomorphism Group Groupoid

Morphisms form an abelian group Ring Ringoid

So a category with potentially more than one object and no restriction on morphisms

should be called a monoidoid. But that is just a category!

Definition 3.1.3. Let A be a preadditive category and f : x→ y be a morphism.

(1) A kernel of f is a morphism i : z → x such that f ◦ i = 0 and for any i′ : z′ → x

such that f ◦ i′ = 0, there exists a unique morphism g : z′ → z such that i′ = i ◦ g

z x y

z′

i f

i′
∃!g
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When a kernel of f exists, it is denoted by ker f → x.

(2) A cokernel of f is a morphism p : y → z such that p◦f = 0 and for any p′ : y → z′

such that p′ ◦ f = 0, there exist a unique morphism g : z → z′ such that g′ = g ◦ p

x y z

z′

f p

p′
∃!g

When a cokernel of f exist, it is denoted by y → coker f .

(3) If a kernel of f exist, then a coimage of f is a cokernel of the morphism ker f → x.

When a kernel and coimage exist, it is denoted by x→ coim f .

(4) If a cokernel of f exist, then an image of f is a kernel of the morphism y → coker f .

When a cokernel and image exist, it is denoted by im f → y.

Lemma 3.1.4. [Sta24, 0E43] Let A be a preadditive category and f : x → y be a

morphism.

(1) If a kernel of f exists, then i : ker f → x is a monomorphism.

(2) If a cokernel of f exists, then p : y → coker f is an epimorphism.

(3) If a kernel and a coimage of f exist, then x→ coim f is an epimorphism.

(4) If a cokernel and an image of f exist, then im f → x is a monomorphism.

Proof.

(1) Suppose g, h : z → ker f are two morphisms such that i ◦ g = i ◦ h, it suffices to

show g = h. A is a preadditive category implies i ◦ (g − h) = i ◦ g − i ◦ h = 0. Then

f ◦ i ◦ (g − h) = 0 which means by the universal property of kernel, there exist a unique

morphism z → ker f such that the following diagram commute

ker f x y

z

i f

i◦(g−h)=0
∃!

Now, both 0 : z → ker f and (g − h) : z → ker f make the diagram commute. By

uniqueness, 0 = g − h which implies g = h as desired.

(2) Suppose g, h : coker f → z are two morphisms such that g ◦ p = h ◦ p, it suffices

to show g = h. A is a preadditive category implies (g − h) ◦ p = g ◦ p− h ◦ p = 0. Then

(g−h)◦p◦f = 0 which means by the universal property of cokernel, there exist a unique
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morphism coker f → z such that the following diagram commute

x y coker f

z

f p

(g−h)◦p=0
∃!

Now, both 0 : coker f → z and (g − h) : coker f → z make the diagram commute. By

uniqueness, 0 = g − h which implies g = h as desired.

(3) This follows from (2) because x→ coim f is the cokernel of ker f → x.

(4) This follows from (1) because im f → y is the kernel of y → coker f .

Lemma 3.1.5. [Sta24, 0107] Let f : x → y be a morphism in a preadditive category

such that kernel, cokernel, image, coimage all exist. Then f can be factored uniquely as

x→ coim f → im f → y.

Proof. Name the morphisms as labeled in the diagram below

ker f x y coker f

coim f im f

f pyix

px iy

py◦f = 0 by definition of cokernel, which means there exist unique morphism φ : x→ im f

such that the diagram commute because iy : im f → y is the kernel of py : y → coker f .

Then iy ◦ φ ◦ ix = f ◦ ix = 0 by that commutativity of the diagram and the definition

of kernel. iy is a monomorphism by lemma 3.1.4, which implies φ ◦ ix = 0. Then there

exist unique morphism ψ : coim f → im f such that the diagram commute because

px : x→ coim f is the cokernel of ix : ker f → x

ker f x y coker f

coim f im f

f pyix

px iyφ

ψ

Definition 3.1.6. Let A be a category

(1) A is an additive category if it is preadditive and finite products exist.

(2) A is a preabelian category if it is additive and every morphism have a kernel and

a cokernel.

(3) A is an abelian category if it is preabelian and for every morphism f , the natural

map coim f → im f is an isomorphism.

Definition 3.1.7. A chain complex A• in an preadditive category A is a collection of

object {Ai ∈ Ob(A) | i ∈ Z} and a collection of morphism {di : Ai → Ai−1 | i ∈ Z} such
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that di−1 ◦ di = 0 for all i ∈ Z

· · · Ai+1 Ai Ai−1 · · ·di+1 di

A morphism of chain complexes f : A• → B• is a family of morphisms {fi : Ai → Bi}
such that for all i ∈ Z, the following diagram commute

Ai Ai−1

Bi Bi−1

di

fi−1fi

di

The category of chain complexes of A is denoted by Ch(A). If A is a additive category,

the full subcategory consisting of objects of the form

· · · A2 A1 A0 0 0 · · ·

is denoted by Ch≥0(A).

Remark 3.1.8. Any additive category A can be identified with the full subcategory of

Ch(A) consisting of chain complexes that are zero except in degree 0 by the functor

A −→ Ch(A)

A 7−→ (· · · → 0 → A→ 0 → · · · )

Definition 3.1.9. Let A• be a chain complex in an abelian category A. For all i ∈ Z,
the i-th homology group of A• is defined by

Hi(A•) = ker(di)/ im(di+1)

(the cokernel of im(di+1) → ker(di)). If f : A• → B• is a morphism of chain complexes

in A, then we get an induced morphism Hi(f) : Hi(A•) → Hi(B•) because kernel of

di get maps to kernel of di and image of di+1 get maps to image of di+1. Therefore,

Hi : Ch(A) → A is a functor.

Definition 3.1.10. Let A be a preadditive category.

(1) A homotopy h between a pair of morphisms of chain complex f, g : A• → B• is a

collection of morphisms hi : Ai → Bi+1 such that fi − gi = di+1 ◦ hi + hi−1 ◦ di for
all i ∈ Z

· · · Ai+1 Ai Ai−1 · · ·

· · · Bi+1 Bi Bi−1 · · ·

di+1 di

di+1 di

fi+1 gi+1 fi gi fi−1 gi−1hi hi−1

Two morphisms f, g : A• → B• is homotopic if there exist a homotopy between f

and g.

(2) A morphism f : A• → B• is a homotopy equivalence if there exist a morphism

g : B• → A• such that there exist a homotopy between b ◦ a and idA• and there
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exist a homotopy between a ◦ b and idB• . A• and B• is homotopy equivalent if

there exist a morphism between them that is a homotopy equivalence.

Definition 3.1.11. Let A be an abelian category. A morphism f : A• → B• is a quasi-

isomorphism if the induced map Hi(f) : Hi(A•) → Hi(B•) is an isomorphism for all

i ∈ Z. A• is quasi-isomorphic to B• if there exist a morphism from A• to B• that is a

quasi-isomorphism

Remark 3.1.12. Quasi-isomorphism is not an equivalence relation because it does not

satisfy the symmetric property. For example, consider the following quasi-isomorphism

of chain complexes in the category of abelian groups

0 Z Z 0

0 0 Z/2Z 0

×2

where Z → Z/2Z is the quotient map. There is only one morphism of chain complexes

in the other direction, but it is not a quasi-isomorphism.

Lemma 3.1.13. Let A be an abelian category.

(1) If f, g : A• → B• are homotopic, then the induced maps Hi(f) and Hi(g) are equal.

(2) If f : A• → B• is a homotopy equivalence, then f is a quasi-isomorphism.

Proof.

(1) Let hi : Ai → Bi+1 be a collection of morphisms such that fi − gi = di+1 ◦ hi +
hi−1 ◦ di. Then (fi − gi)(ker di) ⊆ im(di+1) because hi−1(di(ker di)) = hi−1(0) = 0 and

di+1(hi(ker di)) ⊆ im(di+1). By definition of homology and the fact that the category

Ch(A) is also abelian, Hi(f − g) = Hi(f)−Hi(g) = 0, which means Hi(f) = Hi(g).

(2) Let g : B• → A• such that g◦f is homotopic to idA• and f◦g is homotopic to idB• .

Then Hi(g) ◦Hi(f) = Hi(g ◦ f) = Hi(idA•) = idHi(A•), and Hi(f) ◦Hi(g) = Hi(f ◦ g) =
Hi(idB•) = idHi(B•) implies Hi(f) is an isomorphism. So f is a quasi-isomorphism.

3.2 Differential and Naive Cotangent Complex

Definition 3.2.1. [Sta24, 00RN] Let φ : R → S be a ring homomorphism and M be

an S-module. An R-derivation into M is an R-linear map d : S → M that satisfy

d(ab) = ad(b) + bd(a) (Leibniz rule).

The set of all R-derivations into M forms an S-module and is called the module of

derivation, denoted by DerR(S,M).

If f :M → N is an S-module homomorphism and f : S →M is an R-derivation into
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M , then f ◦ d is an R-derivation into N . In this way, DerR(S,−) is a functor from the

category of S-modules to the category of S-modules.

Lemma 3.2.2. There exist S-module ΩS/R with a S-module homomorphism d : S →
ΩS/R such that Hom(ΩS/R,M) → Der(S,M) defined by α 7→ α ◦ d gives an isomorphism

of functors from Hom(ΩS/R,−) to Der(S,−).

S ΩS/R

M

d

α
α◦d

Proof. Define the following map of free S-module ⊕
(x,y)∈S2

S[(a, b)]

⊕

 ⊕
(f,g)∈S2

S[(f, g)]

⊕

⊕
(r∈R)

S[r]

→
⊕
a∈S

S[a]

defined by

[(a, b)] 7−→ [a+ b]− [a]− [b]

[(f, g)] 7−→ [fg]− f [g]− g[f ]

[r] 7−→ [φ(r)]

Denote the cokernel of this map by ΩS/R. Then ΩS/R satisfies the universal property

claimed by construction.

Definition 3.2.3. The pair (ΩS/R, d) is call the module of differential of S over R.

Lemma 3.2.4. [Sta24, 00RR] Suppose the following is a commutative diagram of rings

S S ′

R R′
ψ

βα

φ

where φ : S → S ′ is surjective with kerφ = I. Then ΩS/R → ΩS′/R′ is surjective with

kernel generated as an S-modules by elements da, where φ(a) ∈ β(R′).

Lemma 3.2.5. [Sta24, 00RU] Suppose the following is a commutative diagram of rings

S S ′

R

α

φ

β

where φ : S → S ′ is surjective with kerφ = I. Then there is a canonical exact sequence

of S ′-modules

I/I2 ΩS/R ⊗S S
′ ΩS′/R 0

f + I2 df
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Lemma 3.2.6. [Sta24, 02HP] Suppose the following is a commutative diagram of rings

S S ′

R

α

φ

β

where φ : S → S ′ is surjective with kerφ = I. Assume there exist R-algebra homomor-

phism S ′ → S which is a right inverse to φ. Then there is a canonical splitting short

exact sequence of S ′-modules

0 I/I2 ΩS/R ⊗S S
′ ΩS′/R 0

f + I2 df

Lemma 3.2.7. [Sta24, 02HQ] Let R → S be a ring homomorphism, I ⊆ S be an

ideal, and n ∈ N. Let S ′ = S/In+1. Then the induced map ΩS/R → ΩS′/R induces an

isomorphism

ΩS/R ⊗S S/I
n → ΩS′/R ⊗S′ S/In

Lemma 3.2.8. [Sta24, 00RX] If S = R[xi | i ∈ I], then ΩS/R is a free S-modules with

basis {dxi | i ∈ I}.

Definition 3.2.9. [Sta24, 07BN] Let R → S be a ring homomorphism. The naive

cotangent complex NLS/R is the chain complex

NLS/R = (I/I2 → ΩR[S]/R ⊗R[S] S)

with I/I2 placed in degree 1 and ΩR[S]/R ⊗R[S] S placed in degree 0.

Remark 3.2.10. There is an actual cotangent complex associated to a ring homomor-

phism. See Stacks Project 08PL.

Definition 3.2.11. Let R → S be a ring homomorphism. A presentation of S over

R is a surjection α : P → S of R-algebras where P is a polynomial algebra. For every

presentation α : P → S with kerα = I, we have a two term chain complex of S-modules

NL(α) : I/I2 ΩP/R ⊗P S

with I/I2 placed in degree 1 and ΩP/R ⊗P S placed in degree 0. The complex NL(α) is

called the naive cotangent complex associated to the presentation α : P → S.

Lemma 3.2.12. [Sta24, 00S1] Suppose the following is a commutative diagram of rings

S S ′

R R′

φ

Let α : P → S and α′ : P ′ → S ′ be presentations.

(1) There exists a morphism of presentation from α to α′.
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(2) Any two morphisms of presentations induce homotopic morphism of complexes

NL(α) → NL(α′).

(3) The construction is compatible with compositions of morphisms of presentations.

(4) If R → R′ and S → S ′ are isomorphisms, then for any morphism of presentation

α → α′, the induced map NL(α) → NL(α′) is a homotopy equivalence and a quasi-

isomorphism.

3.3 Smooth and Étale Maps

The goal of this section is to define smooth and étale morphism of schemes.

Definition 3.3.1. [Sta24, 00F3] Let R → S be a ring homomorphism

(1) R → S is of finite type if there exist n ∈ N and a surjection of R-algebras

R[x1, . . . , xn] → S.

(2) R → S is of finite presentation if there exist n,m ∈ N and polynomials f1, . . . , fm ∈
R[x1, . . . , xn] and an isomorphism of R-algebras R[x1, . . . , xn]/⟨f1, . . . , fm⟩ ≃ S.

Definition 3.3.2. [Sta24, 00T2] A ring homomorphism R → S is smooth if it is of

finite presentation and the naive cotangent complex NLS/R is quasi-isomorphic to a finite

projective S-module place in degree 0.

Remark 3.3.3. IfR → S is a smooth ring homomorphism, then ΩS/R is a finite projective

S-module.

Lemma 3.3.4. [Sta24, 05GK] Let R → S be a ring homomorphism of finite presentation.

Suppose α : P → S is a presentation of S over R such that the naive cotangent complex

NL(α) is quasi-isomorphic to a finite projective S-module placed in degree 0, then this

holds for any presentation.

Definition 3.3.5. [Sta24, 00TI] A ring homomorphism R → S is formally smooth

over R if for every commutative diagram

S A/I

R A

where A is a ring and I ⊆ A is an ideal such that I2 = 0, there exist a ring homomorphism

S → A such that the diagram commute

S A/I

R A
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Lemma 3.3.6. [Sta24, 031H] A composition of formally smooth ring homomorphisms is

formally smooth.

Proof. Let R → S and S → T be formally smooth ring homomorphisms. Suppose given

a commutative diagram

T A/I

R A

where A is a ring and I ⊆ A is an ideal such that I2 = 0, it suffices to show there exist

T → A making the diagram commute. We have the commutative diagram on the left

where S → A/I is the composition S → T → A/I

T A/I T A/I T A/I

S S S

R A R A R A

Since R → S is formally smooth, there exist ring homomorphism S → A giving the middle

commutative diagram. S → T is formally smooth implies there exist ring homomorphism

T → A giving the right commutative diagram. Then T → A lifts T → A/I which shows

R → S → T is formally smooth.

Lemma 3.3.7. [Sta24, 00TK] A polynomial ring over R is formally smooth over R.

Proof. Let P = R[Xi | i ∈ I] be a polynomial ring over R. Suppose given a commutative

diagram

P A/I

R A

where R → P is the inclusion map, A is a ring, and I ⊆ A is an ideal such that I2 = 0.

P → A/I can be lifted to a ring homomorphism P → A by mapping generators to a lift

in A and using universal property of polynomial ring. So R → P is formally smooth.

Lemma 3.3.8. [Sta24, 00TL] Let R → S be a ring homomorphism. Let P → S be a

presentation of S over R. Denote J ⊆ P the kernel. Then R → S is formally smooth

if and only if there exists an R-algebra homomorphism σ : S → P/J2 which is a right

inverse to the surjection P/J2 → S.

Remark 3.3.9. The proof of lemma 3.3.8 only make use of the fact that P is formally

smooth over R, so the statement can be generalized. But we will only use it when P is

a polynomial ring with coefficients in R.
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Lemma 3.3.10. [Sta24, 031I] Let R → S be a ring homomorphism. Let P → S be a

presentation of S over R. Denote J ⊆ P the kernel. Then R → S is formally smooth if

and only if the following is a splitting short exact sequence

0 J/J2 ΩP/R ⊗P S ΩS/R 0

Proposition 3.3.11. [Sta24, 031J] Let R → S be a ring homomorphism. The following

are equivalent

(1) S is formally smooth over R,

(2) there exist presentation P → S of S over R with kernel J ⊆ P such that there

exists a section S → P/J2.

(3) for every presentation P → S of S over R with kernel J ⊆ P , there exist a section

S → P/J2.

(4) there exist presentation P → S of S over R with kernel J ⊆ P such that the

following is a splitting short exact sequence

0 J/J2 ΩP/R ⊗P S ΩS/R 0

(5) for every presentation P → S of S over R with kernel J ⊆ P , the following is a

splitting short exact sequence

0 J/J2 ΩP/R ⊗P S ΩS/R 0

(6) the naive cotangent complex NLS/R is quasi-isomorphic to a projective S-module

placed in degree 0.

Proposition 3.3.12. [Sta24, 00TN] Let R → S be a ring homomorphism. The following

are equivalent

(1) R → S is of finite presentation and formally smooth,

(2) R → S is smooth.

Proof.

(1) =⇒ (2) Suppose R → S is formally smooth, by proposition 3.3.11, then the naive

cotangent complex is quasi-isomorphic to a projective S-module placed in degree 0. Since

R → S is also of finite presentation, it follows that R → S is smooth by definition.

(2) =⇒ (1) Suppose R → S is smooth, then the naive cotangent complex is quasi-

isomorphic to a projective S-module placed in degree 0. by proposition 3.3.11, R → S is

formally smooth. R → S is of finite presentation because it is smooth.

Definition 3.3.13. [Sta24, 00U1] A ring homomorphism R → S is étale if it is of finite

presentation and the naive cotangent complex NLS/R is quasi-isomorphic to zero. Given
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a prime ideal q ∈ SpecS, R → S is étale at q if there exists g ∈ S \ q such that R → Sg

is étale.

Definition 3.3.14. [Sta24, 01V5] Let f : X → S be a morphism of schemes.

(1) f is smooth at x ∈ X if there exist an affine open neighborhood SpecA = U ⊆ X

of x and affine open SpecR = V ⊆ S with f(U) ⊆ V such that the induced ring

homomorphism R → A is smooth.

(2) f is smooth if it is smooth at every point of X.

Definition 3.3.15. [Sta24, 02GI] Let f : X → S be a morphism of schemes.

(1) f is étale at x ∈ X if there exist an affine open neighborhood SpecA = U ⊆ X

of x and affine open SpecR = V ⊆ S with f(U) ⊆ V such that the induced ring

homomorphism R → A is étale.

(2) f is étale if it is étale at every point of X.

Lemma 3.3.16. Suppose SpecA and SpecB are affine open subschemes of a scheme X.

Then SpecA∩ SpecB is the union of open sets that are simultaneously basic open set of

SpecA and SpecB.

Proof. It suffices to show that for each point in SpecA ∩ SpecB, there is an open set

containing that point and is simultaneously basic open set of SpecA and SpecB. Let

p ∈ SpecA ∩ SpecB. Since basic open sets {Uf : f ∈ A} form a basis of SpecA,

and SpecA ∩ SpecB is an open subset of SpecA, it follows that ∃f ∈ A such that

Uf ⊆ SpecA ∩ SpecB. Moreover, Uf = SpecAf (as schemes, where Uf have the open

subscheme structure) because

OX(Uf ) = OSpecA(Uf ) = Af

Since basic open sets {Ug : g ∈ B} form a basis of SpecB, and Uf = SpecAf is an

open subset of SpecB, it follows that ∃g ∈ B such that Ug ⊆ Uf = SpecAf . Moreover,

Ug = SpecBg (as schemes, where Ug have the open subscheme structure) because

OX(Ug) = OSpecB(Ug) = Bg
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SpecA SpecB

SpecAf

SpecBg

p

Consider the following restriction map

OX(SpecB) OX(SpecAf )

OSpecB(SpecB) OSpecA(SpecAf )

B Af

g g′

=
=

=
=

and define g′ ∈ Af to be the image of g ∈ B. Then

SpecBg = {p ∈ SpecB | g ̸∈ p}
= {p ∈ SpecB | g(p) ̸∈ pBp}
= {q ∈ SpecAf | g′(q) ̸∈ q(Af )q}
= {q ∈ SpecAf | g′ ̸∈ q} = Spec(Af )g′

If g′ = g′′/fn ∈ Af with g′′ ∈ A, then Spec(Af )g′ = SpecAfg′′ . So SpecBg = SpecAfg′′

is simultaneously basic open set of SpecA and SpecB.

Lemma 3.3.17. (Affine Communication Lemma) Let P be some property enjoyed by

some affine open subsets of a scheme X, such that for any affine open subset SpecA ⊆ X

(i) if SpecA ⊆ X has property P, then for any f ∈ A, SpecAf ⊆ X does too

(ii) if ⟨f1, . . . , fn⟩ = A and SpecAfi ⊆ X has P for all i ∈ {1, . . . , n}, then so does

SpecA ⊆ X.

Suppose X has an open cover {SpecAi}i∈I each having P. Then every affine open subset

of X have P.

Proof. Let SpecB ⊆ X be an affine open subset, it suffices to show B have P. Then

{SpecAi ∩ SpecB}i∈I covers SpecB. For each i ∈ I, SpecAi ∩ SpecB is a union of open

sets that are simultaneously basic open set of SpecAi and SpecB (lemma 3.3.16). Say

SpecAi ∩ SpecB =
⋃
j∈Ji

Spec(Ai)fj
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Then SpecB =
⋃
i∈I

⋃
j∈J

Spec(Ai)fj . Since SpecB is quasi-compact, SpecB is a finite union

of Spec(Ai)fj . Say

SpecB =
n⋃
k=1

Spec(Aik)fjk

By lemma 3.3.16, ∀k ∈ {1, . . . , n}, Spec(Aik)fjk = SpecBgk for some gk ∈ B. Then

SpecB =
n⋃
k=1

SpecBgk

Then ⟨g1, . . . , gk⟩ = B because if not, then ⟨b1, . . . , bk⟩ is contained in some maximal ideal

that contains g1, . . . , gk, contradicting the fact that SpecB is the union of SpecBgk .

• By assumption (i), ∀k ∈ {1, . . . , n}, SpecAik have P implies Spec(Aik)fjk = SpecBgk

have P.

• By assumption (ii), Spec(Aik)fjk = SpecBgk have P for all k ∈ {1, . . . , n} implies

SpecB have P.

Lemma 3.3.18. [Sta24, 01V6] Let f : X → S be a morphism of schemes. The following

are equivalent

(1) The morphism f is smooth.

(2) For every affine opens U ⊆ X, V ⊆ S with f(U) ⊆ V , the ring map OS(V ) →
OX(U) is smooth.

(3) There exist open covering S =
⋃
i∈J Vj and open coverings f−1(Vj) =

⋃
i∈Ij Ui such

that Ui → Vj is smooth for all j ∈ J and i ∈ Ij.

(4) There exist an affine open covering S =
⋃
j∈J Vj and affine open coverings f−1(Vj) =⋃

i∈Ij Ui such that the ring map OS(Vj) → OX(Ui) is smooth for all j ∈ J and i ∈ Ij.

Proof. It is clear that (2) =⇒ (4) =⇒ (3) =⇒ (1). So it suffices to show (1) =⇒ (2). By

Affine Communication Lemma (lemma 3.3.17), it suffices to show

(i) If B → A is a smooth ring homomorphism, then for all f ∈ A, B → Af is a smooth

ring homomorphism.

(ii) If B → A is a ring homomorphism such that f1, . . . , fn ∈ A, B → Afi are smooth

ring homomorphisms, and ⟨f1, . . . , fn⟩ = A, then B → A is a smooth ring homo-

morphism.

Both of these statements are algebra results.

Lemma 3.3.19. Let f : X → S be a morphism of schemes. The following are equivalent

(1) The morphism f is étale.
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(2) For every affine opens U ⊆ X, V ⊆ S with f(U) ⊆ V , the ring map OS(V ) →
OX(U) is étale.

(3) There exist open covering S =
⋃
i∈J Vj and open coverings f−1(Vj) =

⋃
i∈Ij Ui such

that Ui → Vj is étale for all j ∈ J and i ∈ Ij.

(4) There exist an affine open covering S =
⋃
j∈J Vj and affine open coverings f−1(Vj) =⋃

i∈Ij Ui such that the ring map OS(Vj) → OX(Ui) is étale for all j ∈ J and i ∈ Ij.

Proof. It is clear that (2) =⇒ (4) =⇒ (3) =⇒ (1). So it suffices to show (1) =⇒ (2). By

lemma 3.3.17, it suffices to show

(i) If B → A is a étale ring homomorphism, then for all f ∈ A, B → Af is a étale ring

homomorphism.

(ii) If B → A is a ring homomorphism such that f1, . . . , fn ∈ A, B → Afi are étale ring

homomorphisms, and ⟨f1, . . . , fn⟩ = A, then B → A is a étale ring homomorphism.

Both of these statements are algebra results.
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4 Algebraic Space and Algebraic Stack

4.1 Yoneda Lemma and Representability

The goal of this section is to understand what it means for a natural transformation to

be representable.

Definition 4.1.1. [Sta24, 001O] Let C be a category. For any U ∈ Ob(C)

hU : C −→ Sets

V 7−→ MorC(V, U)

(f : W −→ V ) 7−→

(
MorC(V, U) −→ MorC(W,U)

g 7−→ g ◦ f

)
defines a contravariant functor. It is called the representable presheaf (definition 2.2.2)

associated to U . This functor is denoted by hU .

Definition 4.1.2. [Sta24, 001Q] Let C be a category. A contravariant functor F : C →
Sets is representable if it is isomorphic to hU for some U ∈ Ob(C).

Lemma 4.1.3. [Sta24, 001P] (Yoneda lemma) Let C be a category and F be contravariant

functor from C to Sets. Then for every U ∈ Ob(C), there is a natural bijection between

the natural transformation η : hU → F and the set F (U).

Proof. Denote the set of natural transformation hU → F by Nat(hU , F ).

Bijection. Define Φ : Nat(hU , F ) → F (U) by Φ(η) = ηU(idU) for η ∈ Nat(hU , F ).

Define Ψ : F (U) → Nat(hU , F ) by Ψ(x)V (f) = F (f)(x) (f ∈ hU(V ) = MorC(V, U)) where

x ∈ F (U) To check Ψ is well-defined, it suffices to show Ψ(x) is a natural transformation.

Let V,W ∈ Ob(C) and f : V → W a morphism. Then the following diagram commute

hU(V ) F (V )

hU(W ) F (W )

Ψ(x)V

F (f)−◦f

Ψ(x)W

because given g ∈ hV (U) = Mor(V, U)

F (f)(Ψ(x)V (g)) = F (f)(F (g)(x)) = (F (f) ◦ F (g))(x) = F (g ◦ f)(x) = Ψ(x)W (g ◦ f)

Φ and Ψ are inverses of each other because

Φ(Ψ(x)) = Ψ(x)U(idU) = F (idU)(x) = idF (U)(x) = x

Ψ(Φ(η))V (f) = Ψ(ηU(idU))V (f) = F (f)(ηU(idU)) = ηV (idU ◦f) = ηV (f)
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Naturality. Let f : V → U , it suffices to show the following diagram commute

Nat(hU , F ) F (U)

Nat(hV , F ) F (V )

F (f)−◦Ψ(f)

ΦU

ΦV

where Ψ : hU(V ) → Nat(hV , hV ) is defined by Ψ(f) = −◦ f . This is the case because for
η ∈ Nat(hU , F )

F (f)ΦU(η) = F (f)ηU(idU) = ηV (f ◦ idU) = ηV (f)

ΦV (η ◦Ψ(f)) = (η ◦Ψ(f))V (idV ) = ηVΨ(f)V (idV ) = ηV (idV ◦f) = ηV (f)

where the second equality hold because the diagram in the construction of bijection in

this proof is commutative. Therefore, the bijection between Nat(hU , F ) and F (U) is

natural.

Remark 4.1.4. Let C be a category and U, V ∈ Ob(C). By Yoneda lemma (lemma 4.1.3)

applied to the functor hV , there exist a natural bijection between the natural transfor-

mations hU → hV and hU(V ) = MorC(V, U). This implies an object determines and is

determined by its representable functor.

Definition 4.1.5. In the category of schemes, a representable functor hX : Sch → Set is

called the functor of points of the scheme X. For a scheme Y , hX(Y ) = MorSch(Y,X)

is called the Y -points of X, and a morphism of scheme Y → X is called a Y -point of

X. This terminology generalizes the terminology from ring theory which we explain in

the remark below.

Remark 4.1.6. Let f ∈ Z[x1, . . . , xn] and R be a ring. The R-points of f is defined to

be {(a1, . . . , an) ∈ Rn | f(a1, . . . , an) = 0} R 7→ {(a1, . . . , an) ∈ Rn | f(a1, . . . , an) = 0}
defines a covariant functor from the category of rings to the category of sets. Then

{(a1, . . . , an) ∈ Rn | f(a1, . . . , an) = 0} = MorRings

(
Z[x1, . . . , xn]

⟨f⟩
, R

)
= MorSch

(
SpecR, Spec

Z[x1, . . . , xn]
⟨f⟩

)
This set of morphism is called the R-points of f , so when SpecR is replaced with Y and

Spec(Z[x1, . . . , xn]/⟨f⟩) is replaced with X, we call MorSch(Y,X) the Y -points of X.

Lemma 4.1.7. [Sta24, 0022] Let C be a category, F,G,H be contravariant functor from

C to Sets, and a : F → G, b : H → G be natural transformations. Then F ×a,G,b H

defined as follows

(F ×a,G,b H)(U) = F (U)×aU ,G(U),bU H(U)

for any U ∈ Ob(C) is also a contravariant functor. F ×a,G,b H also defines the fiber

product of F,H over G in the category PSh(C).

32



Proof.

F ×G H is a contravariant functor. Let U, V ∈ Ob(C) and φ ∈ MorC(U, V ). By

universal property of fiber products, there exist an induced map (F ×GH)(V ) → (F ×G

H)(U).

(F ×G H)(V ) H(V )

(F ×G H)(U) H(U)

F (V ) G(V )

F (U) G(U)

H(φ)

bV

bU

aV

F (φ)

G(φ)

aU

F ×G H respects compositions and identity by the uniqueness of the induced map from

the universal property of fiber product.

F ×G H satisfies the universal property of fiber product F ×G H comes with maps

pF : F ×G H → F and pH : F ×G H → H defined by

Suppose K : C → Sets be a contravariant functor with natural transformation c :

K → F , d : K → H

Definition 4.1.8. [Sta24, 0023] Let C be a category and F,G be contravariant functors

from C to Sets. A natural transformation a : F → G is representable if for every

U ∈ Ob(C) and every ξ ∈ G(U), the functor F ×G hU is representable

F ×G hU

F hU

G

a ξ

using the natural bijection in Yoneda lemma (lemma 4.1.3), ξ ∈ G(U) correspond to a

natural transformation hU → G which we will also denote by ξ.

Lemma 4.1.9. [Sta24, 0024] Let C be a category and F be a contravariant functor from

C to Sets. Assume C has products of pairs of objects and fiber products. Then the

following are equivalent

(1) The diagonal ∆ : F → F × F is representable.

(2) For every U ∈ Ob(C), and any ξ ∈ F (U), the map ξ : hU → F is representable.

(3) For every U, V ∈ Ob(C), and any ξ ∈ F (U), ξ′ ∈ F (V ), the fiber product hU ×F hV

is representable.
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Proof.

(2) ⇐⇒ (3) Unwinding the definition for a natural transformation to be representable

in (2) (definition 4.1.8) shows it is precisely (3).

(1) =⇒ (3) Suppose ∆ : F → F × F is representable. Let U, V ∈ Ob(C) and

ξ ∈ F (U), ξ′ ∈ F (V ). It suffices to show the functor hU ×F hV is representable.

By the assumption of existence of product, U×V ∈ Ob(C). By lemma 4.1.7, hU×hV =

hU×V which is representable. Let ξ × ξ′ : hU×V → F × F be the morphism induced by

the universal property of product of F × F

hU × hV

hU hU×V hV

F × F

F F

=
ξ

ξ×ξ′

ξ′

By lemma 4.1.3, suppose W ∈ Ob(C) and (φ, φ′) ∈ hU(W )× hV (W ) = hU×V , then

(ξ × ξ′)(φ, φ′) = (ξ(φ), ξ′(φ′)) = (F (φ)(ξ), F (φ′)(ξ′))

Let W ∈ Ob(C), then

(F ×
F×F

hU×V )(W ) = F (W ) ×
(F×F )(W )

hU×V (W )

=

{
(φ, φ′) ∈ hU×V (W )

θ ∈ F (W )

∣∣∣∣∣ ∆(θ) = (ξ × ξ′)(φ, φ′)

}

=


φ ∈ hU(W )

φ′ ∈ hV (W )

θ ∈ F (W )

∣∣∣∣∣∣∣ (θ, θ) = (F (φ)(ξ), F (φ′)(ξ′))


=

{
φ ∈ hU(W )

φ′ ∈ hV (W )

∣∣∣∣∣ F (φ)(ξ) = F (φ′)(ξ′)

}
= hU(W ) ×

F (W )
hV (W ) = (hU ×F hV )(W )

By definition of ∆ : F → F ×F is representable, F ×F×F hU×V is a representable functor.

Therefore, hU ×F hV = F ×F×F hU×V is a representable functor.

(3) =⇒ (1) Suppose for every U, V ∈ Ob(C), and any ξ ∈ F (U), ξ′ ∈ F (V ), the

fiber product hU ×F hV is representable. By definition 4.1.8, it suffices to show for every

U ∈ Ob(C) and every (ξ, ξ′) ∈ (F × F )(U) = F (U) × F (U), the functor F ×F×F hU is
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representable.

(F ×
F×F

hU)(W ) = F (W ) ×
F (U)×F (U)

hU(W )

=

{
φ ∈ hU(W )

θ ∈ F (W )

∣∣∣∣∣∆(θ) = (ξ, ξ′)(φ)

}

=

{
φ ∈ hU(W )

θ ∈ F (W )

∣∣∣∣∣(θ, θ) = ((F (φ)(ξ)), (F (φ)(ξ′)))

}
= hU(W )×F (W ) hU(W ) = (hU ×F hU)(W )

where the functor hU ×F hU comes from ξ ∈ F (U) and ξ′ ∈ F (U) By assumption,

hU ×F hU is representable which implies F ×F×F hU = hU ×F hU is representable. By

definition 4.1.8, ∆ : F → F × F is representable.

Remark 4.1.10. lemma 4.1.9 also follows from the diagonal base change diagram (One

reference is [Vak24, Exercise 1.3.S.]) which states in any category, assuming relevant fiber

product exist, the following is a fiber product diagram

X1 ×Y X2 X1 ×X2

Y Y × Y
∆

or more generally, the following is a fiber product diagram

X1 ×Y X2 X1 ×Z X2

Y Y ×Z Y∆

The proof is a rather lengthy diagram chase, and we do not need the result here.

4.2 fppf Topology

Definition 4.2.1. Let f : X → S be a morphism of schemes.

(1) f : X → S is quasi-compact if the underlying map of topological spaces is quasi-

compact, i.e., if V ⊆ S is quasi-compact, then f−1(V ) is quasi-compact.

(2) f : X → S is quasi-separated if the diagonal morphism ∆X/S : X → X ×S X is

quasi-compact.

(3) f is flat at a point x ∈ X if the local ring OX,x is flat over the local ring OS,f(x),

i.e. OX,x is a flat OS,f(x)-module.

(4) f is flat if f is flat at every point of X.

(5) f is of finite presentation at x ∈ X if there exist an affine open neighborhood

SpecA = U ⊆ X of x and affine open SpecR = V ⊆ S with f(U) ⊆ V such that
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the induced ring homomorphism R → A is of finite presentation (definition 3.3.1).

(6) f is locally of finite presentation if it is of finite presentation at every point of

X.

(7) f is of finite presentation if it is locally of finite presentation, quasi-compact and

quasi-separated.

Definition 4.2.2. [Sta24, 021M] Let T be a scheme. An fppf covering of T is a family

of morphisms {fi : Ti → T}i∈I of schemes such that each fi is flat, locally of finite

presentation and such that T =
⋃
fi(Ti).

Remark 4.2.3. The letters fppf stand for “fidèlement plat de présentation finie”.

Lemma 4.2.4. [Sta24, 021O] Let T be a scheme.

(1) If T ′ → T is an isomorphism, then {T ′ → T} is an fppf covering of T .

(2) If {Ti → T}i∈I is an fppf covering and for each i, we have an fppf covering {Tij →
Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is an fppf covering.

(3) If {Ti → T}i∈I is an fppf covering and T ′ → T is a morphism of schemes, then

{T ′ ×T Ti → T ′}i∈I is an fppf covering.

Definition 4.2.5. [Sta24, 021R] A big fppf site is any site Schfppf constructed as

follows:

(1) Choose any set of schemes S0, and any set of fppf coverings Cov0 among theses

schemes.

(2) As underlying category, take any category Schα starting with the set S0.

(3) Choose any set of coverings starting with the category Schα and the class of fppf

coverings, and the set Cov0.

Remark 4.2.6. The idea behind Schα is that it is a category where the collection of

objects is a set, rather than a proper class, of schemes, and it is closed under a list of

natural operations. Then Schfppf is giving a site structure to the category Schα.

Definition 4.2.7. [Sta24, 021S] Let S be a scheme. Let Schfppf be a big fppf site contain-

ing S. The big fppf site of S, denoted by (Sch /S)fppf , is the site Schfppf /S (item (3)).

4.3 Algebraic Space

The goal of this section is to define an algebraic space over a base scheme.

Definition 4.3.1. Let S be a scheme contained in Schfppf . Let F,G : (Sch /S)oppfppf → Sets

be presheaves, and a : F → G be a representable transformation of functors (defini-

tion 4.1.8). By definition of representable transformation, for every U ∈ Ob((Sch /S)fppf)
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and any ξ ∈ G(U), the fiber product hU ×ξ,G,a F is representable. Choose a representing

object Vξ and an isomorphism hVξ → hU ×G F . By Yoneda lemma (lemma 4.1.3), the

projection hVξ → hU ×GF → hU comes from a unique morphism of schemes aξ : Vξ → U .

Vξ hVξ F

U hU G

a

ξ

aξ

Let P be a property of schemes which

(1) is preserved under any base change, and

(2) is fppf local on the base.

In this case, we say that a has property P if for every U ∈ Ob(Sch /S)fppf and any

ξ ∈ G(U), the resulting morphism of schemes Vξ → U has property P.

Definition 4.3.2. [Sta24, 025Y] Let S be a scheme contained in Schfppf . An algebraic

space over S is a presheaf

F : (Sch /S)oppfppf → Sets

with the following properties

(1) The presheaf F is a sheaf (definition 2.2.3).

(2) The diagonal morphism F → F × F is representable (definition 4.1.8).

(3) There exists a scheme U ∈ Ob((Sch /S)fppf) and a map hU → F which is surjective

and étale. (definition 4.3.1)

Lemma 4.3.3. [Sta24, 025Z] A scheme is an algebraic space. More precisely, given a

scheme T ∈ Ob((Sch /S)fppf), the representable presheaf hT is an algebraic space.

Proof. We check hT satisfies the three conditions in definition 4.3.2. In the site Schfppf ,

all representable presheaves are sheaves. The diagonal morphism hT → hT ×hT = hT×ST

is representable because the fiber product T ×S T exist in (Sch /S)fppf . The identity map

hT → hT is surjective and étale.

4.4 Algebraic Stack

The goal of this section is to define an algebraic stack over a base scheme.

Definition 4.4.1. [Sta24, 02ZQ] Let S be a scheme contained in Schfppf . Let p : X →
(Sch /S)fppf be a category fibered in groupoids (definition 2.3.2) over (Sch /S)fppf . X

is representable by a scheme if there exist a scheme U ∈ Ob((Sch /S)fppf) and an

equivalence

j : X −→ (Sch /U)fppf
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of categories over (Sch /S)fppf .

Definition 4.4.2. [Sta24, 04SV] Let S be a scheme contained in Schfppf . Let p : X →
(Sch /S)fppf be a category fibered in groupoids over (Sch /S)fppf . X is representable

by an algebraic space if there exists an algebraic space F over S and an equivalence

j : X → SF of categories over (Sch /S)fppf (example 2.3.8)

Definition 4.4.3. [Sta24, 026N] Let S be a scheme contained in Schfppf . An algebraic

stack over S is a category

p : X −→ (Sch /S)fppf

over (Sch /S)fppf with the following properties

(1) The category X is a stack in groupoids over (Sch /S)fppf (definition 2.3.10).

(2) The diagonal ∆ : X → X× X is representable by algebraic spaces.

(3) There exists a scheme U ∈ Ob((Sch /S)fppf) and a functor (Sch /U)fppf → X which

is surjective and smooth.

Definition 4.4.4. [Sta24, 03YO] Let S be a scheme contained in Schfppf . Let X be an

algebraic stack over S. X is a Deligne-Mumford stack if there exists a scheme U and

a surjective étale morphism (Sch /U)fppf → X.
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