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Abstract

Pipedreams are combinatorial objects that compute Grothendieck polynomials. In this
thesis, we study the support of Grothendieck polynomials using pipedreams and answer
three questions. First, we provide an explicit algorithm that constructs the unique maximal
pipedream of the leading monomial for any double Grothendieck polynomial, resolving a
frustration of Pechenik, Speyer, and Weigandt. Then, we introduce the first direct combi-
natorial formula for the top degree components of Grothendieck polynomials. Finally, we
prove the inverse fireworks case of a conjecture of Mészáros, Setiabrata, and St. Dizier on
the support of Grothendieck polynomials as an application of our new combinatorial object.
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1. Introduction

Some of the most natural things we can ask in enumerative geometry are questions like
“how many lines intersect this set of lines in 3D space?”. Making enumerations like these
rigorous was the goal of Hilbert’s 15th Problem, and the associated program of Schubert
calculus.

In this thesis, we introduce three types of polynomials in Schubert calculus that are all
labeled by permutations. For w P Sn, Lascoux and Schützenberger [LS82] introduced the
Schubert polynomial Swpxq. They are generalizations of the classical Schur polynomials
and they represent the cohomology classes of Schubert varieties in the flag variety. They
also introduced Grothendieck polynomials Gwpxq, which are explicit polynomial representa-
tives of the K-classes of structure sheaves of Schubert varieties in flag varieties. In general,
Grothendieck polynomials are not homogeneous. Their lowest degree homogeneous compo-
nents recover the Schubert polynomials. Lastly, double Grothendieck polynomials are gen-
eralizations of Grothendieck polynomials in variables x1, . . . , xn, y1, . . . , yn; they represent
Schubert classes in the torus-equivariant K-theory of flag varieties. All three polynomi-
als can be computed using combinatorial objects called pipedreams [BB93, BJS93, FK94],
which are certain diagrams under a staircase tiled with crossings and bumps. Each w P Sn

is associated with a set of pipedreams, denoted as PDpwq. We may compute the monomial
supports of our polynomials by assigning certain weights to the tiles in each pipedream in
PDpwq.

The matrix Schubert variety Xw is a determinantal variety that has been studied exten-
sively (see for instance [FUL92, KM05, KMY09, WY18]). Castelnuovo–Mumford regularity
measures the algebraic complexity of varieties. Since matrix Schubert varieties are Co-
hen–Macaulay [FUL92, KM05, Ram85], the Castelnuovo–Mumford regularity of Xw is the
difference between the top and bottom degree of its K-polynomial. By the work of Knutson
and Miller [KM05], the K-polynomial of Xw is the Grothendieck polynomial Gwpxq. Conse-
quently, determining the Castelnuovo–Mumford regularity of Xw reduces to computing the
degree of Gwpxq. With this motivation, there has been a recent surge in the study of top
degree components of Gwpxq [DMSD22, Haf22, PSW21, PY23, RRR`21, RRW23], which we

denote as pGwpxq.
Pechenik, Speyer, and Weigandt [PSW21] defined a statistic rajcodep¨q on Sn using in-

creasing subsequences of permutations. They showed that xrajcodepwqyrajcodepw´1q is the leading
monomial in the top degree components of the double Grothendieck polynomials Gwpx,yq

with respect to the lexicographical order where xn ą ¨ ¨ ¨ ą x1 and yn ą ¨ ¨ ¨ ą y1. However,
in Remark 7.2, they said:

“We find it frustrating that we do not have a direct recipe for the maximal
pipe dream in terms of w.”

We relieve their frustration in Section 4 by providing an explicit algorithm that construct
the maximal pipedream with row weight rajcodepwq and column weight rajcodepw´1q.
Furthermore, it is conjectured by Mészáros, Setiabrata, and St. Dizier [MSSD22] that

pGwpxq governs the support of Gwpxq. Pechenik, Speyer, and Weigandt [PSW21] showed

that any pGwpxq is equal to pGupxq for some inverse fireworks u. In Section 5, we provide the

first direct combinatorial formula of pGwpxq when w is inverse fireworks. We remove certain
pipes from a pipedream to obtain a novel combinatorial object called a marked vertical-
less pipedream (see Definition 5.4). In other words, we introduce a set MVPDpwq and a
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weight preserving bijection Φ : PDpwq Ñ MVPDpwq. Consequently, each M P MVPDpwq

is associated with a monomial wtMpxq which agrees with its corresponding pipedream. We

then classify the highest weight MVPDs, which we denote as {MVPDpwq, when w is inverse
fireworks. We then biject them with a similar combinatorial object which we call bumpless

vertical-less pipedreams (BVPDs), obtaining our formula for pGwpxq.
Finally, we provide an application of MVPDs in Section 6 by proving the inverse fireworks

case of the following conjecture by Mészáros, Setiabrata, and St. Dizier on the support
Grothendick polynomials.

Conjecture 1.1. [MSSD22, Conjecture 1.2] If α P SupppGwq and |α| ă degpGwq, then there
exists i P rns such that xiα P SupppGwq.

Our proof is constructive, for any P P PDpwq with weight α, we construction P 1 P PDpwq

with the desired weight.
The content of this thesis is mainly from [CY23] and [CY24].
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2. Polynomials in Schubert calculus

2.1. Permutation. Polynomials in Schubert calculus are often labeled by permutations. We
start off with some definitions related to permutations. Let rns denote the set t1, 2, . . . , nu

and Sn be the symmetric group of n objects.

Definition 2.1. A permutation w P Sn is a bijection from rns to itself. We write w in one-line
notation as the string wp1qwp2q . . . wpnq.

Example 2.2. The permutation w “ 521463 is the bijection in S6 that sends 1 Ñ 5, 2 Ñ 2,
3 Ñ 1, 4 Ñ 4, 5 Ñ 6, and 6 Ñ 3.

Definition 2.3. The inversion set of w P Sn is

Invpwq :“ tpi, jq : i ă j, wpiq ą wpjqu

The length of w is ℓpwq :“ |Invpwq|. Elements in Invpwq are called inversions . The weak
decomposition that counts the number of inversions for each i is the invcode or Lehmer code.

Example 2.4. For w “ 521463, we have

Invpwq “ tp1, 2q, p1, 3q, p1, 4q, p1, 6q, p2, 3q, p4, 6q, p5, 6qu,

ℓpwq “ 7, and invcodepwq “ p4, 1, 0, 1, 1, 0q.

Definition 2.5. The long element , denoted w0, is the permutation in Sn with the longest
length, or the most inversions. It has one-line notation nn ´ 1 ¨ ¨ ¨ 2 1.

We then introduce inverse fireworks permutations, a special family of permutations which
we will study in Section 5 and 6.

Definition 2.6. A permutation is fireworks if the start of each decreasing run is increasing.

Example 2.7. The permutation w “ 154263 is fireworks since its decreasing runs 1, 542, and
63 have their starting number in increasing order 1 ă 5 ă 6. The permutation w “ 164253
is not fireworks since its decreasing runs 1, 642, and 53 do not have their starting number
in increasing order.

Fireworks permutations are also known as 3 ´ 12 avoiding permutations.

Definition 2.8. A permutation is inverse fireworks if its inverse is fireworks.

Example 2.9. The permutation w “ 146325 is inverse fireworks since its inverse w´1 “ 154263
is fireworks.

Proposition 2.10. [PSW21] Inverse fireworks permutations in Sn are enumerated by the
nth Bell number, which is the number of set partitions of rns.

Proof. For each set partition of rns, we order the blocks in increasing order of their largest
number, and order the numbers in each block in decreasing order. This gives a natural bijec-
tion between set partitions and fireworks permutations, which bijects with inverse fireworks
permutations. □
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2.2. Schubert polynomial. We now define Schubert polynomials, which were first intro-
duced by Lascoux and Schützenberger [LS82]. Schubert polynomials represent the cohomol-
ogy classes of Schubert varieties in the flag variety. They can be defined recursively using
the divided difference operator.

Definition 2.11. Consider the ring Zrx1, . . . , xns and the group action of Sn that permutes
the variables by their subscripts. For i P rns, the divided difference operator Bi is defined as
follow:

Bipfq :“
f ´ sipfq

xi ´ xi`1

, @f P Zrx1, . . . , xns

where si is the adjacent transposition in Sn that swaps i and i ` 1.

They are called the divided difference operators because Bipfq is symmetric in xi and xi`1.
Furthermore, Bipfq “ 0 if and only if f is already symmetric in xi and xi`1.

Definition 2.12. The Schubert polynomials Sw are defined as follow:

Sw :“

#

xn´1
1 xn´2

2 ¨ ¨ ¨ x2
n´2x

1
n´1 w “ w0

BipSwsiq wpiq ă wpi ` 1q

Example 2.13. We calculate S312 by definition.

S312 “ B2pS312¨s2q “ B2pS321q “ B2px
2
1x2q

“
x2
1x2 ´ x2

1x3

x2 ´ x3

“
x2
1px2 ´ x3q

x2 ´ x3

“ x2
1

Similarly, we can calculate the Schubert polynomials for all the permutations in S3 and form
the following diagram:

S321 “ x2
1x2

S231 “ x1x2 S312 “ x2
1

S213 “ x1 S132 “ x1 ` x2

S123 “ 1

B2

B1

B2B1

B2

B1

2.3. Grothendieck polynomial. Grothendieck polynomials, also introduced by Lascoux
and Schützenberger [LS82], are generalizations of Schubert polynomials. They are the K-
theoritic analogs of Schubert polynomials and they represent the classes of the structure
sheaves of Schubert varieties in K-theory. They can also be defined recursively using a
similar operator.

Definition 2.14. For i P rns, we define a variation of the divided difference operator, denoted
as Bi, as follow:

Bipfq :“ Bipf ´ xi`1fq, @f P Zrx1, . . . , xns
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Definition 2.15. The Grothendieck polynomials Gwpxq are defined as follow:

Gwpxq :“

#

xn´1
1 xn´2

2 ¨ ¨ ¨ x2
n´2x

1
n´1 w “ w0

BipGwsipxqq wpiq ă wpi ` 1q

Example 2.16. We calculate G312 and G132 by definition.

G312 “ B2pG312¨s2q “ B2pG321q “ B2px
2
1x2q “ B2px2

1x2 ´ x2
1x2x3q

“
x2
1x2 ´ x2

1x2x3 ´ x2
1x3 ` x2

1x2x3

x2 ´ x3

“
x2
1px2 ´ x3q

x2 ´ x3

“ x2
1

G132 “ B1pG132¨s1q “ B1pG312q “ B1px
2
1q “ B1px

2
1 ´ x2

1x2q

“
x2
1 ´ x2

1x2 ´ x2
2 ´ x1x

2
2

x1 ´ x2

“
px1 ´ x2qpx1 ` x2q ´ x1x2px1 ´ x2q

x1 ´ x2

“ x1 ` x2 ´ x1x2

Similarly, we can calculate the Grothendieck polynomials for all the permutations in S3 and
form the following diagram:

G321 “ x2
1x2

G231 “ x1x2 G312 “ x2
1

G213 “ x1 G132 “ x1 ` x2 ´ x1x2

G123 “ 1

B2

B1

B2B1

B2

B1

In general, Grothendieck polynomials are not homogeneous. The lowest degree homoge-
neous part of a Grothendieck polynomial Gw is the respective Schubert polynomial Sw.

Double Grothendieck polynomials are further generalizations of Grothendieck polynomials
in 2n variables labeled x1, . . . , xn, y1, . . . , yn. They represent Schubert classes in the torus-
equivariant K-theory of flag varieties.

Definition 2.17. The double Grothendieck polynomials Gpx,yq are defined as follow:

Gwpx,yq :“

#

ś

i`jďnpxi ` yj ´ xiyjq w “ w0

BipSwsipx,yqq wpiq ă wpj ` 1q

Double Grothendieck polynomials specializes to Grothendieck polynomials when we set
y1 “ y2 “ ¨ ¨ ¨ “ yn “ 0. Equivalently, Gwpx, 0q “ Gwpxq.

In the next section, we introduce combinatorial objects that allow us to calculate Gwpxq

without using the divided difference operators.
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3. Combinatorial Objects

We study the polynomials in Section 2 through combinatorial objects called pipedreams [BB93,
BJS93, FK94, KM05] and bumpless pipedreams [LLS21, LLS23].

3.1. Rothe diagram. We start off by representing permutations with diagrams. For w P Sn,
we can find a pipedream P P PDpwq through its Rothe diagram Rothepwq, which encodes
the inversions of w.

Definition 3.1. For w P Sn, we define its Rothe diagram Rothepwq as the following subset of
cells in an n ˆ n grid

Rothepwq “ tpi, wpjqq : pi, jq P Invpwqu

Example 3.2. The following is Rothepwq for the permutation w “ 24513. Its inversion
set is Invpwq “ tp1, 4q, p2, 4q, p2, 5q, p3, 4q, p3, 5qu, so its Rothe diagram consists of the cells
tp1, 1q, p2, 1q, p2, 3q, p3, 1q, p3, 3qu.

3.2. Pipedream. We now introduce our first combinatorial object that computes Schubert
and Grothendieck polynomials called pipedreams, defined by Bergeron and Billey [BB93].

Definition 3.3. A reduced pipedream of size n is a tiling with n ` 1 ´ i left justified tiles in

row i. The tile pi, n ` 1 ´ iq is for i P rns. All other tiles can be or but multiple
crossings of two pipes are not allowed. We first label the left of the diagram 1, . . . , n from
top to bottom, then we trace the pipes from left to top and read off the labels of the pipes
on the top edge of the reduced pipedream as a permutation w P Sn. We say this reduced
pipedream is associated with w´1. Let PD1

pwq denote the set of all reduced pipedreams
associated with w.

Example 3.4. The following are two reduced pipedreams of the permutation w with one-line
notation 24513. Its inverse has one-line notation 41523.

1
2
3
4
5

4 1 5 2 3
1
2
3
4
5

4 1 5 2 3

Notice that no pair of pipes crossed more than once.

Definition 3.5. A non-reduced pipedream is similar to a reduced pipedream but we allow

double crossings. Suppose we see a where the pipe on the left (resp. bottom) has label p
(resp. q). If pipe p and q have not crossed before, we say they cross in this tile and let pipe
p (resp. q) exit from the right (resp. top). Otherwise, we let pipe p (resp. q) exit from the
top (resp. right). Notice that this rule is the same as saying pipe maxpp, qq exits from the
top and the other exits from the right.
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Example 3.6. The following is a non-reduced pipedream of the same permutation 24513 with
inverse 41523.

1
2
3
4
5

4 1 5 2 3

We make pipe 3 blue and pipe 5 green. Notice that pipe 3 and pipe 5 cross at p3, 2q. However,
pipe 3 and pipe 5 do not cross at p2, 3q since they already crossed.

Definition 3.7. We simply call the union of reduced and non-reduced pipedreams of w P Sn

as the pipedreams of w, denote PDpwq. The row (resp. column) weight of a pipedream is

a weak composition where the i
th

entry is the number of in row (resp. column) i of the
pipedream.

The pipedream in Example 3.6 therefore has row weight p2, 2, 2, 0, 0q and column weight
p3, 1, 2, 0, 0q.

Since the positions of all the uniquely determine a pipedream, we may denote a

pipedream as an n ˆ n diagram where colored cells are the locations of and blank cells

are the locations of .

Example 3.8. Below are the pipedreams in Example 3.4 and 3.6 under our new convention.

We now determine row (resp. column) weight by counting the number of cells in each row
(resp. column).

We define the weight of a pipedream as

wtP pxq “
ź

pi,jqPP

xi, wtP px,yq “
ź

pi,jqPP

pxi ` yj ´ xiyjq

Theorem 3.9. Following [FK94] and [KM05], Schubert polynomials Swpxq, Grothendieck
polynomial Gwpxq, and double Grothendieck polynomial Gwpx,yq can be defined as

Swpxq :“
ÿ

PPPD1pwq

wtP pxq

Gwpxq :“
ÿ

PPPDpwq

p´1q
|wtypP q|´ℓpwqwtP pxq

Gwpx,yq :“
ÿ

PPPDpwq

p´1q
|wtypP q|´ℓpwqwtP px,yq

Therefore, each pipedream represents a monomial in Gwpxq with degree equal to its row
weight. We may then study these polynomials and their support using pipedreams.

We now introduce actions that we can perform on a pipedream P P PDpwq that give us
other pipedreams in PDpwq.
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Definition 3.10. When row r column c of a pipedream P is , we write pr, cq P P . We may

apply a ladder move on a in row r column c of a pipedream P if all the following are
satisfied:

‚ pr, c ` 1q R P .
‚ There exists r1 ă r such that pr1, cq R P and pr1, c`1q R P . In addition, pi, cq, pi, c`1q P

P for any r1 ă i ă r.

Now we perform the ladder move at the in row r column c of P . First turn the at row

r1 column c ` 1 into a . Then we may or may not turn the at row r column c into .
If we do that, the move is called a (regular) ladder move. Otherwise, the move is called a
K-ladder move.

Locally, the moves look like the following:

regular ladder move
ÝÝÝÝÝÝÝÝÝÝÝÑ

K-ladder move
ÝÝÝÝÝÝÝÝÑ

Let
ÐÝÝÝÝÝÝ
Rothepwq be the diagram obtained by left-justifying all cells in Rothepwq. The following

proposition includes three statements about (K-)ladder moves and pipedreams that are well
known to experts. We will prove them below for completeness.

Proposition 3.11. For all w P Sn, we have the following:

(1)
ÐÝÝÝÝÝÝ
Rothepwq is a (reduced) pipedream of PDpwq.

(2) PDpwq is closed under (K-)ladder moves.
(3) Every pipedream P P PDpwq can be obtained by applying a series of (K-)ladder moves

starting from
ÐÝÝÝÝÝÝ
Rothepwq.

Example 3.12. The following are all the pipedreams of the permutation w “ 2413. The left

pipedream is
ÐÝÝÝÝÝÝ
Rothepwq. We apply a regular (resp. K-) ladder move on p2, 2q to obtain the

middle (resp. right) pipedream.

Since these are all the pipedreams in PDpwq, by Theorem 3.9,

Swpxq “ x1x
2
2 ` x2

1x2

Gwpxq “ x1x
2
2 ` x2

1x2 ´ x2
1x

2
2

Gwpx,yq “ px1 ` y1 ´ x1y1qpx2 ` y1 ´ x2y1qpx2 ` y2 ´ x2y2q

` px1 ` y1 ´ x1y1qpx2 ` y1 ´ x2y1qpx1 ` y3 ´ x1y3q

´ px1 ` y1 ´ x1y1qpx2 ` y1 ´ x2y1qpx2 ` y2 ´ x2y2qpx1 ` y3 ´ x1y3q

Proof. Statement p1q is trivial, and p2q can also be seen by tracing the inputs and outputs
along the edge of the n ˆ 2 rectangle.

We prove p3q by showing that all pipedreams in PDpwq are
ÐÝÝÝÝÝÝ
Rothepwq after a series of reverse

(K-)ladder moves. We use the fact that any left-justified pipedream in PDpwq must be



11

ÐÝÝÝÝÝÝ
Rothepwq. Suppose P P PDpwq is not left-justified. Let pr, cq be the crossing in P such that
pr, c ´ 1q is not a crossing and r is chosen to be maximal. Since r is chosen to be maximal,
there does not exist r1 ą r such that tpr1, cq, pr1, c ´ 1qu X P “ tpr1, c ´ 1qu. Therefore, there
exists r̂ ą r that satisfies the following two statements:

tpr1, cq, pr1, c ´ 1qu X P “ tpr1, cq, pr1, c ´ 1qu @r ă r1
ă r̂ (1)

tpr̂, c ´ 1q, pr̂, cqu X P “ tpr̂, cqu or tpr̂, c ´ 1q, pr̂, cqu X P “ H (2)

If tpr̂, c ´ 1q, pr̂, cqu X P “ tpr̂, cqu, then we can perform a reverse K-ladder move on pr, cq
that simply removes pr, cq from P . And if tpr̂, c´ 1q, pr̂, cqu XP “ H, then we can perform a
reverse ladder move on pr, cq that removes pr, cq and adds pr̂, c´ 1q. We repeat this action if
our pipedream is still not left-justified. Since we are strictly decreasing the column index of
cells during each reverse (K-)ladder move, our sequence of action must terminate, resulting
in a left-justified pipedream. □

3.3. Bumpless pipedream. Introduced by Lam, Lee, and Shimozono [LLS21], bumpless
pipedream is another combinatorial object in Schubert calculus. Similar to pipedreams,
we will define reduced bumpless pipedreams that compute Schubert polynomials and (non-
reduced) bumpless pipedreams that compute Grothendieck polynomials. Both of which are
tilings consisting of the following six types of tiles:

Compared to pipedreams, we are not using any , hence the name “bumpless pipedream”.

Definition 3.13. A reduced bumpless pipedream is a tiling of an n ˆ n grid with the 6 tiles
above forming a system of n pipes entering from the bottom of the diagram and exiting from
the right. Multiple crossings are not allowed. We label the pipes by the column they start
in and read off the labels on the right as a permutation w in one-line notation. We say this
bumpless pipedream is associated w and denote the set of all reduced bumpless pipedream
as BPD1

pwq.

Example 3.14. The following are all the reduced bumpless pipedreams of the permutation
w “ 2143.

1 2 3 4

2
1
4
3

1 2 3 4

2
1
4
3

1 2 3 4

2
1
4
3

Notice that no pair of pipes crossed more than once.

Definition 3.15. A non-reduced bumpless pipedream is similar to a reduced bumpless pipedream

but we allow multiple crossings. Suppose we see a where the pipe on the left (resp. bot-
tom) has label p (resp. q). If pipe p and q have not crossed before, we say they cross in this
tile and let pipe p (resp. q) exit from the right (resp. top). Otherwise, we let pipe p (resp.
q) exit from the top (resp. right). Notice that this rule is the same as saying pipe maxpp, qq

exits from the top and the other exits from the right.
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Example 3.16. The following is a non-reduced bumpless pipedream of the permutation w “

2143.

1 2 3 4

2
1
4
3

We make pipe 1 blue and pipe 2 green. Notice that pipe 1 and pipe 2 cross at p3, 2q. However,
pipe 1 and pipe 2 do not cross at p2, 3q since they already crossed.

We simply call the union of all reduced bumpless pipedreams and non-reduced bumpless
pipedreams associated with the permutation w as the bumpless pipedreams of w, denoted

BPDpwq. For any bumpless pipedream P , let BpP q be the set of in P and JpP q be the

set of in P .

Theorem 3.17 ([LLS21, Theorem 5.2]).

Swpxq “
ÿ

PPBPD1pwq

ź

pi,jqPBpP q

xi

Equivalently, the Schubert polynomial Swpxq is the sum over all weighted reduced bump-

less pipedreams of w, where the weight of P is the number of in each row.

Theorem 3.18.

Gwpxq “
ÿ

PPBPD1pwq

ź

pi,jqPBpP q

xi

ź

pi,jqPJpP q

p1 ´ xiq

Equivalently, the Grothendieck polynomial Gwpxq is the sum over all weighted bumpless

pipedreams of w, where each contributes xi and contributes 1 ´ xi.
To generate all bumpless pipedreams of w, we define the Rothe bumpless pipedream

RBPDpwq and (K-) droop moves. We first notice that each bumpless pipedream is uniquely

determined by the locations of its and .

Definition 3.19. Let the Rothe bumpless pipedream of w, denote RBPDpwq, be the reduced

bumpless pipedream of w obtained by placing at pw´1piq, iq with no . It is called the

Rothe bumpless pipedream because the of RBPDpwq is exactly Rothepwq.

Example 3.20. Let w “ 2143. The following is RBPDpwq.

1 2 3 4

2
1
4
3

We now define droop moves and K-droop moves that can be performed on a bumpless
pipedream of w to obtain other bumpless pipedreams of w.

Definition 3.21. A droop move is a local move that replaces a with and replaces a

to its southeast with a . A K-droop move replaces a with and replaces a to its
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southeast with a , where this is not the only crossing between the two pipes. For either
move, we reconnect the pipes accordingly afterwards.

Example 3.22. The following are some of the possible droop moves applied to the at the
top left corner.

ÝÝÝÑ

Example 3.23. The following is an example of a K-droop moves applied to the at the top
left corner.

ÝÝÝÑ

Notice that the number of increases by 1 after a K-droop move.

Proposition 3.24 ([LLS21, Proposition 5.3]). Every reduced bumpless pipedream of w can
be obtained from RBPDpwq by a sequence of droop moves.

We may obtain the bumpless pipedreams in Example 3.14 from RBPDpwq by applying a

droop move to the at p1, 2q and p2, 1q respectively.

Proposition 3.25. Every bumpless pipedream of w can be obtained from RBPDpwq by a
sequence of droop moves and K-droop moves.

We may obtain the non-reduced bumpless pipedream in Example 3.16 by applying a K-
droop move to p1, 2q in the second bumpless pipedream or to p2, 1q in the third bumpless
pipedream in Example 3.14.

Example 3.26. The following are all the bumpless pipedreams for w “ 2143. The first three
are reduced bumpless pipedreams and the last one is non-reduced.

1 2 3 4

2
1
4
3

1 2 3 4

2
1
4
3

1 2 3 4

2
1
4
3

1 2 3 4

2
1
4
3

Therefore

Swpxq “ x1x3 ` x1x2 ` x2
1

Gwpxq “ x1x3 ` x1x2p1 ´ x3q ` x2
1p1 ´ x3q ` x2

1x2p1 ´ x3q

Since PD1
pwq and BPD1

pwq both compute Swpxq, one might expect a bijection between
these two combinatorial objects. Gao and Huang gave a direct bijection by interpreting
reduced compatible sequences on bumpless pipedreams.

Theorem 3.27 ([GH23, Theorem 3.6]). There exits a canonical bijection between PD1
pwq

and BPD1
pwq that preserves Monk’s rule.

Tianyi Yu communicated with us that Theorem 3.27 can be extended to a bijection be-
tween PDpwq and BPDpwq.
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4. Maximal pipedreams of double Grothendieck polynomials

In this section, we provide an explicit algorithm that constructs the unique maximal
pipedream that represents the leading monomial of Gwpx,yq.

4.1. Background. Pechenik, Speyer, and Weigandt [PSW21] defined a statistic rajcodep¨q

on permutations w P Sn using their increasing subsequences. They showed xrajcodepwq is the
leading monomial in the top degree components of its Grothendieck polynomial Gwpxq with
respect to the lexicographical order where xn ą ¨ ¨ ¨ ą x1. This permutation statistic also
generalizes to double Grothendieck polynomials by the following theorem.

Theorem 4.1 ([PSW21, Theorem 1.4]). The leading monomial of top degree components of

Gwpx,yq is xrajcodepwqyrajcodepw´1q with coefficient 1 for any term order with xn ą ¨ ¨ ¨ ą x1 and
yn ą ¨ ¨ ¨ ą y1.

Pechenik, Speyer, and Weigandt established Theorem 4.1 by showing there exists a unique
pipedream in PDpwq with row weight rajcodepwq and column weight rajcodepw´1q, which they
call the maximal pipedream of w. However, in Remark 7.2, they said:

“We find it frustrating that we do not have a direct recipe for the maximal
pipe dream in terms of w.”

The main goal of this section is to relieve their frustration: We give an explicit algorithm to

construct the maximal pipedream pP pwq P PDpwq.
We start by a diagrammatic definition of rajcodepwq given by Pan and Yu [PY23].

Definition 4.2. For any diagrams D, we defined darkpDq Ď D which can be computed as
follows: Scan through D from bottom to top. For each row r, if there exists pr, cq P D such
that currently there is no cells in column c of darkpDq, we find the largest such c and put
pr, cq in darkpDq. Cells in darkpDq of D are called dark clouds of D.

Example 4.3. The following is a diagram D and darkpDq

Definition 4.4 ([PY23]). Take w P Sn and find darkpRothepwqq. For each cell in darkpRothepwqq,
we fill all the empty cells above it in Rothepwq. The resulting diagram is the snow diagram
Snowpwq of w. We define rajcodepwq as the row weight of Snowpwq. Similarly, if for each cell
in darkpRothepwqq, we fill all the empty cells to its right in Rothepwq, we obtain the left snow
diagram of w. We define rajcodepw´1q as the column weight of the left snow diagram.

Example 4.5. Take w P S7 with one-line notation 4617352. The following is its snow diagram
and left snow diagram. For clarity, we represent dark clouds by a black circle and use ˚ to
denote the added cells.

˚ ˚

˚

˚ ˚

˚

Thus, rajcodepwq “ p4, 4, 2, 3, 1, 1q and rajcodepw´1q “ p4, 5, 3, 1, 2q
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4.2. Algorithm. We now give the algorithm that constructs pP pwq starting from
ÐÝÝÝÝÝÝ
Rothepwq.

We perform an iterative algorithm. Each iteration places a bar right above row i for i “

n ´ 2, n ´ 3, ¨ ¨ ¨ , 1. During each iteration, we only look under the bar and imagine row i is
the topmost row. Scan through the columns from right to left. Within each column, scan

through the from top to bottom. Whenever we see a at which we can perform a
ladder move, we perform a regular ladder move. After going through a column, if we have
performed ladder moves on this column, we turn the last ladder move into a K-ladder move.
We repeat until no moves can be made under the bar.

Example 4.6. Take w P S5 with one-line notation 14523. We start from the following
pipedream:

When i “ 3 and 2, we do not make any moves. When i “ 1, we perform:

ÝÝÑ ÝÝÑ ÝÝÑ

Theorem 4.7 ([CY23, Theorem 1.2]). For w P Sn, the pipedream pP pwq we construct has
row weight rajcodepwq and column weight rajcodepw´1q.

Furthermore, our algorithm gives the pipedreams of all leading monomials in each ho-
mogeneous component of a Grothendieck polynomial Gwpxq. Dreyer, Mészáros, and St.
Dizier [DMSD22] found the leading monomial in each homogeneous component of Gwpxq.
Let regpwq be the difference between the sum of entries in rajcodepwq and the sum of
entries in invcodepwq. Define the map IRp¨q that sends w to a sequence of monomials
m0,m1, ¨ ¨ ¨ ,mregpwq. First, m0 :“ xinvcodepwq. For i ą 0, mi :“ mi´1xp where p is the largest

such thatmi´1xp divides x
rajcodepwq. For eachmi, Dreyer, Mészáros, and St. Dizier [DMSD22]

explicitly constructed a climbing chain, another combinatorial model of Gwpxq introduced
in [LRS06], showing mi is the leading monomial in its degree of Gwpxq. In our algorithm, we
start from a pipedream with row weight invcodepwq. During the algorithm, we obtain the
pipedreams corresponding to m1, ¨ ¨ ¨ ,mregpwq.

Theorem 4.8 ([CY23, Theorem 1.4]). Let w P Sn. Perform our algorithm to compute pP pwq.

The algorithm makes regpwq K-ladder moves. Right after the i
th
K-ladder move, we record the

row weight of the pipedream as aipwq. Then xaipwq “ mi where IRpwq “ pm0,m1, ¨ ¨ ¨ ,mregpwqq.

4.3. Various recursions. In this subsection, we provide recursive ways of constructing

Rothepwq,
ÐÝÝÝÝÝÝ
Rothepwq, darkpRothepwqq, and Snowpwq. Then we obtain recursive formulas for

rajcodepwq and rajcodepw´1q. Notice that invcodep¨q is a bijection from Sn to weak com-
positions pα1, α2, ¨ ¨ ¨ q where αi ď n ´ i for i P rn ´ 1s and αn “ αn`1 “ ¨ ¨ ¨ “ 0. We
identify w P Sn with pa, uq P t0, 1, ¨ ¨ ¨ , n ´ 1u ˆ Sn´1 where a “ invcodepwq1 and u is the
unique permutation in Sn´1 with invcodepuq “ pinvcodepwq2, invcodepwq3, ¨ ¨ ¨ q. We simply
write w “ pa, uq.
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We then may recursively construct Rothepwq as follows. Start from Rothepuq. Shift all
cells downward by 1. Then shift all cells in columns a`1, a`2, ¨ ¨ ¨ to the right by 1. Finally,
put cells at p1, 1q, ¨ ¨ ¨ , p1, aq. The resulting diagram is Rothepwq.
Similarly, to construct darkpRothepwqq, we can start from darkpRothepuqq. Shift all cells

downward by 1. Then shift all cells in columns a ` 1, a ` 2, ¨ ¨ ¨ to the right by 1. Finally,
find the largest c P ras such that darkpRothepuqq has no cells in column c. Put p1, cq into
darkpRothepuqq.

Example 4.9. Keep w P S7 with one-line notation 4617352. We have w “ pa, uq where a “ 3
and u P S6 has one-line notation 516342. We depict how Rothepuq and Rothepwq as follows.
The dark cells form darkpRothepuqq and darkpRothepwqq respectively.

ÝÝÑ

Consequently, we may compute rajcodepwq and rajcodepw´1q recursively. Let dcpuq be the
number of cells in darkpRothepuqq that are strictly to the right of column c.

Proposition 4.10. Take w “ pa, uq P Sn.

‚ We can get rajcodepwq by prepending a ` dapuq to rajcodepuq.
‚ To obtain rajcodepw´1q, we just insert dapuq between the ath and pa ` 1qth entries of
rajcodepu´1q. Then increase the first a entries by 1.

Consequently, regpwq ´ regpuq “ dapuq.

Proof. Follows directly from the recursive constructions of Rothepwq and darkpRothepwqq. □

Example 4.11. Keep w “ pa, uq in Example 4.9. We show how the snow diagram and left
snow diagram of w differ from those of u:

˚ ˚ ÝÝÑ ˚ ˚

˚

˚

˚

ÝÝÑ

˚

˚

˚

We have dapuq “ 1. We obtain rajcodepwq “ p4, 4, 2, 3, 1, 1q by prepending a ` dapuq “ 4
to rajcodepuq “ p4, 2, 3, 1, 1q. We obtain rajcodepw´1q “ p4, 5, 3, 1, 2q by inserting dapuq after
the ath entry of rajcodepu´1q “ p3, 4, 2, 2q and then increase the first a entries by 1.
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Notice that when w “ pa, uq, invcodepwq can be obtained by prepending the number a to
invcodepuq. Thus, we also have a recursive formula for IRpwq. For a monomial m, let ÝÑm be
the monomial obtained by turning each xi in m into xi`1.

Proposition 4.12. Take w “ pa, uq P Sn. Let

pM0, ¨ ¨ ¨ ,Mregpwqq “ IRpwq, pm0, ¨ ¨ ¨ ,mregpuqq “ IRpuq.

Then regpwq “ regpuq ` dapuq and

Mj “

#

xa
1
ÝÑmj if j “ 0, 1, ¨ ¨ ¨ , regpuq,

x
a`j´regpuq

1 ˆ ÝÝÝÝÑmregpuq if j “ regpuq ` 1, ¨ ¨ ¨ , regpwq.

Proof. Follows directly from the recursive formula of rajcodepwq and the definition of IRp¨q.
□

Example 4.13. Keep w “ pa, uq in Example 4.9. We have regpuq “ 2 and regpwq “ regpuq `

dapuq “ 3. Since

IRpuq “ pxp4,0,3,1,1q, xp4,1,3,1,1q, xp4,2,3,1,1q
q,

we have

IRpwq “ pxp3,4,0,3,1,1q, xp3,4,1,3,1,1q, xp3,4,2,3,1,1q, xp4,4,2,3,1,1q
q

4.4. Proof of Theorem 4.7 and 4.8. To prove our main theorems, we need to introduce
a new permutation statistic.

Definition 4.14. For w P Sn, its movecode, denoted as movecodepwq, is a weak composition
where movecodepwqi is the number of cells in column i of Rothepwq with no dark clouds
strictly to its right.

Example 4.15. Take w P S7 with one-line notation 4617352. The following is Rothepwq,
where the black cells are dark clouds and blue cells are non-dark cloud cells without dark
clouds to their right.

Then movecodepwq is the number of black and blue cells in each column, which is p1, 3, 2, 0, 2q.

We have the following observation regarding this permutation statistic.

Proposition 4.16. Take w P Sn and c P rns. Then

rajcodepw´1
qc`1 ´ maxpmovecodepwqc`1 ´ 1, 0q “ dcpuq “ rajcodepw´1

qc ´ movecodepwqc.

Proof. We refer to cells in darkpRothepwqq as dark clouds. Consider the left snow diagram of
w. In the diagram, there are four types of cells.

‚ Type 1: Dark clouds
‚ Type 2: Cells that do not belong to Rothepwq.
‚ Type 3: Cells in Rothepwq with a dark cloud in its row on its right.
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‚ Type 4: Cells in Rothepwq that is not a dark cloud and has no dark cloud in its row
on its right.

The number of type 1, 2 and 4 cells in column c ` 1 is dcpwq. The number of all
cells in column c ` 1 is rajcodepw´1qc`1. The number of type 3 cells in column c ` 1 is
maxpmovecodepwqc ´ 1, 0q, so we have the first equation.
The number of type 2 and 3 cells in column c is dcpwq. The number of all cells in column

c is rajcodepw´1qc. The number of type 1 and 4 cells in column c is movecodepwqc, so we
have the second equation. □

The main application of movecodepwq is to characterize the number of cells moved when
our algorithm processes each column.

Proposition 4.17. Take v “ pa, wq P Sn. During the last iteration of the algorithm that

computes pP pvq, the number of cells moved in column c is movecodepwqc if c ą a and 0
otherwise.

Example 4.18. Keep v P S7 with one-line notation 4617352. We have v “ pa, wq where a “ 3
and w P S6 has one-line notation 516342. We have movecodepwq “ p0, 2, 1, 2q. During the
last iteration of the algorithm, the bar is right above row 1. The algorithm moves 0 cells in
column c ą 4, since movecodepwqc “ 0. The algorithm moves 2 cells in column 4 since 4 ą a
and movecodepwq4 “ 2. It moves 0 cells in column 3, 2, and 1 since 1, 2, 3 ď a.

ÝÝÝÑ

We prove this proposition in subsection 4.5. Our proof requires a few technical lemmas
which also lead to the following result:

Corollary 4.19. Consider the iteration when the bar is right above row i in our algorithm.
Let D1 (resp. D2) be the diagram before (resp. after) processing one column. If the algorithm
makes a move in this column, then wtpD2q is obtained from increasing ith entry of wtpD1q

by 1.

Using Proposition 4.17 and Corollary 4.19, we can prove our main results. We start with
Theorem 4.8.

Proof of Theorem 4.8. We induct on n. The base case (n “ 1) is trivial. Let w “ pa, uq P Sn

with n ą 1. By our inductive hypothesis, the algorithm made regpuq K-ladder moves before
the last iteration. By Proposition 4.17, in the last iteration of the algorithm, it makes a
K-ladder move in column c if and only if c ą a and movecodepuqc ą 0. This is exactly the
number dapuq, which equals regpwq ´ regpuq by Proposition 4.10. Thus, the algorithm to

compute pP pwq makes regpwq K-ladder moves in total.
Let

IRpwq “ pM0, ¨ ¨ ¨ ,Mregpwqq, IRpuq “ pm0, ¨ ¨ ¨ ,mregpuqq.

By Proposition 4.12, for i “ 0, ¨ ¨ ¨ , regpuq, we have Mi “ xa
1
ÝÑmi. When the algorithm makes

the ith K-ladder move, the bar has not reached row 1. Before the bar reaches row 1, the
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algorithm ignores the first row of the diagram, which has a cells, and behaves as if computing
pP puq. Thus, the statement holds for i “ 0, 1, ¨ ¨ ¨ , regpuq by our inductive hypothesis.
For i “ regpuq ` 1, ¨ ¨ ¨ , regpwq, the ith K-ladder move happens when the bar is above row

1. Let D be the diagram right after the pi´1qth K-ladder move and D1 be the diagram right
after the ith K-ladder move. By Corollary 4.19, xwtpD1q “ x1 ¨ xwtpDq, which concludes the
proof. □

Proof of Theorem 4.7. By Theorem 4.8, the row weight of pP pwq is rajcodepwq. For the
column weight, we prove by induction on n. The base case n “ 1 is trivial. Now assume
n ą 1 and w “ pa, uq P Sn. Let D be the diagram we have right before the last iteration

of the algorithm computing pP pwq. It can be obtained by shifting pP puq downward by 1 and

append a left-justified cells in the first row. By our inductive hypothesis, pP puq has column
weight rajcodepu´1q. Now take c P rn ´ 1s and consider three cases:

‚ Suppose c ą a ` 1. Consider the last iteration of the algorithm. By Proposi-
tion 4.17, the algorithm makes movecodepuqc (resp. movecodepuqc´1) moves in column
c (resp. c ´ 1). Thus, column c loses maxpmovecodepuqc ´ 1, 0q cells and then gain

movecodepuqc´1 cells. By Proposition 4.16, pP pwq has

rajcodecpu
´1

q ´ maxpmovecodepuqc ´ 1, 0q ` movecodepuqc´1 “ rajcodec´1pu
´1

q

cells in column c. Finally, by Proposition 4.10, rajcodec´1pu´1q is just rajcodecpw
´1q.

‚ Suppose c “ a ` 1. By Proposition 4.17, the algorithm makes movecodepuqc moves
in column c, and makes 0 moves in column c ´ 1 if it exists. Thus, column c loses

maxpmovecodepuqc ´ 1, 0q cells. By Proposition 4.16, pP pwq has

rajcodecpu
´1

q ´ maxpmovecodepuqc ´ 1, 0q “ dapuq

cells in column c. Finally, by Proposition 4.10, dapuq is just rajcodecpw
´1q.

‚ Suppose c P ras. By Proposition 4.17, the algorithm makes 0 moves in column c, and

makes 0 moves in column c ´ 1 if it exists. Thus, pP pwq has rajcodepu´1qc ` 1 cells in
column c. Finally, by Proposition 4.10, rajcodepu´1qc ` 1 is just rajcodecpw

´1q. □

4.5. Proof of Proposition 4.17 and Corollary 4.19. Following subsection 4.3, we derive
a recursive way to compute movecodepwq.

Lemma 4.20. For w P Sn, we write w “ pa, uq. Then movecodepwq can be determined
starting from movecodepuq. First, insert a 0 between movecodepuqa and movecodepuqa`1.
Then start from the ath entry and increase each entry by 1 from right to left. Whenever we
change a 0 into a 1, we stop immediately. The resulting weak composition is movecodepwq.

Proof. Follows directly from the recursive constructions of Rothepwq and darkpRothepwqq. □

Example 4.21. Take w P S7 with one-line notation 4617352. We have w “ p3, uq where
u P S6 has one-line notation 516342. We have movecodepuq “ p0, 2, 1, 2q. Then we insert a 0
between movecodepuq3 and movecodepuq4, obtaining p0, 2, 1, 0, 2q. We then increases entries
by 1 from right to left, starting from the thrid entry. When we turn the 0 in the first entry
into 1, we stop, obtaining p1, 3, 2, 0, 2q.

Our proofs rely on a simple operator on diagrams. We may break the algorithm into a
sequence of this operator.
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Definition 4.22. We define the operator Li,c on diagrams. Take diagram D and put a bar
above row i in D. We ignore everything above the bar, imagining row i is the top-most row.
Then we scan through cells in column c from top to bottom. Whenever we see a cell at which
we can perform a ladder move, we perform a regular ladder move. After going through this
column, if we made a move, turn the last move into a K-ladder move.

With this notion, applying the algorithm on w P Sn can be rewritten as

pP pwq “ pL1,1 ¨ ¨ ¨L1,n´2q ¨ ¨ ¨ pLn´3,1Ln´3,2qpLn´2,1qp
ÐÝÝÝÝÝÝ
Rothepwqq (3)

In words, we iterate through i “ n ´ 2, ¨ ¨ ¨ , 2, 1. For each i, we iterate through c “ n ´ 1 ´

i, ¨ ¨ ¨ , 2, 1 and apply Li,c.
We start by observing a straightforward recursive property of this operator.

Remark 4.23. Fix i, c P Zą0 and let D be a diagram. Suppose pi, cq R D and pi, c ` 1q R D.

‚ Suppose pi ` 1, cq P D and pi ` 1, c ` 1q R D. Let D1 be the diagram obtained by
moving pi ` 1, cq to pi, c ` 1q in D. If Li`1,cpD

1q ‰ D1, we know Li,cpDq “ Li`1,cpD
1q.

Otherwise, Li,cpDq “ D1 \tpi`1, cqu. Informally, in this case, Li,c behaves as if Li`1,c

after the regular ladder move on pi ` 1, cq.
‚ Suppose pi ` 1, cq P D and pi ` 1, c ` 1q P D. Then intuitively, Li,c behaves as if row
i`1 is ignored: Let D1 be obtained from D by removing pi`1, cq and pi`1, c`1q. If
pi` 1, c` 1q R Li`1,cpD

1q, Li,cpDq “ Li`1,cpD
1q \ tpi` 1, cq, pi` 1, c` 1qu. Otherwise,

Li,cpDq “ Li`1,cpD
1q \ tpi ` 1, cq, pi, c ` 1qu.

We are primarily interested in applying Li,c to a diagram in the following case.

Definition 4.24. We say the operator Li,c acts initially on D if D is fixed by Li`1,c.

Eventually, we will show all Li,c in our algorithm acts initially. We first derive a few
properties when Li,c acts initially on D.

Lemma 4.25. Suppose Li,c acts initially on D and Li,c moves at least one cell. We let
pr1, cq, ¨ ¨ ¨ , prk, cq be the cells moved where r1 ă ¨ ¨ ¨ ă rk. Let r0 “ i. Then we know the
cell prj, cq is moved to prj´1, c ` 1q for j P rks. Thus, wtpLi,cpDqq is obtained from wtpDq by
adding 1 to the ith entry.

Proof. If Li,c moves pr1, cq to pr1, c ` 1q for some r1 ą i, then Li`1,c will also move pr1, cq to
pr1, c ` 1q. This contradicts our assumption that Li,c acts initially on D. Thus, Li,c moves
pr1, cq to pi, c ` 1q.

For j ą 1, when prj, cq moves, prj´1, cq and prj´1, c` 1q must both be empty since the cell
in prj´1, cq just performed a ladder move. Therefore prj, cq must be moved to pr1, c ` 1q for
some r1 ě rj´1. However, r

1 ą rj´1 contradicts the assumption that Li,c acts initially on D,
so r1 “ rj´1. □

To better describe the effect of Li,c when it acts initially, we introduce the following notion.

Definition 4.26. The pi, cq-initial segment of a diagram D is the set of pr, cq such that pr1, cq P

D for all i ď r1 ď r.

This notion characterizes the destination of cells moved by Li,c when it acts initially.

Lemma 4.27. Suppose Li,c acts initially on D. Then it moves cells to the pi, c ` 1q-initial
segment of Li,cpDq.
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Proof. Let pr1, cq, pr2, cq, . . . , prk, cq where r1 ă r2 ă ¨ ¨ ¨ ă rk be the cells of D moved by
Li,c. Let r0 “ i. By Lemma 4.25, for j P rks, prj, cq is moved to prj´1, c ` 1q. We show
prj´1, cq is in the pj, c ` 1q-initial segment of Li,cpDq by induction on j. For the base case,
pr0, c ` 1q “ pi, c ` 1q is clearly in the pj, c ` 1q-initial segment of Li,cpDq.

For j ą 1. assume prj´2, c` 1q is in the pi, c` 1q-initial segment of Li,cpDq. Since prj´1, cq
is moved to prj´2, c ` 1q, we know pr1, c ` 1q P Li,cpDq for any rj´2 ă r1 ă rj´1. Thus,
prj´1, c ` 1q is in the pi, c ` 1q-initial segment of Li,cpDq. □

We can also use “initial segment” to characterize what cells can be moved by Li,c when it
acts initially.

Lemma 4.28. Suppose Li,c acts initially on D. If pi, cq P D, then D is fixed by Li,c.
Otherwise, a cell pr, cq P D is moved by Li,c if and only if it is in the pi`1, cq-initial segment
of D and pr, c ` 1q R D.

Proof. The lemma is immediate when pi, cq P D. Otherwise, let pr1, cq, ¨ ¨ ¨ , prk, cq P D be
the cells moved by Li,c where r1 ă ¨ ¨ ¨ ă rk. Let r0 “ i. Clearly, prj, c ` 1q R D for each
j P rks. We prove prj, cq is in the pi ` 1, cq-initial segment of D by induction. First, by
Lemma 4.25, pr1, cq is moved to pr0, c`1q, so pr1, cq P D for r0 “ i ă r1 ă r1. In other words,
pr1, cq is in the pi ` 1, cq-initial segment of D. For j ą 1, by Lemma 4.25, prj, cq is moved to
prj´1, c ` 1q, so pr1, cq P D for rj´1 ă r1 ă rj. The inductive step is finished since prj´1, cq is
in the pi ` 1, cq-initial segment of D.

Now assume pr, cq is a cell in the pi` 1, cq-initial segment of D and pr, c` 1q R D. Assume
toward contradiction that pr, cq is not moved by Li,c. Take the smallest such r. Since Li,c

moves prj, cq to prj´1, cq, we know pr1, c ` 1q P D for any rj´1 ă r1 ă rj. Thus, we cannot
have rj´1 ă r ă rj for j P rks. Since pr, cq is not moved, we know r is not r1, ¨ ¨ ¨ , rk. Thus,
r ą rk. By the minimality of r, pr1, cq, pr1, c`1q P D for rk ă r1 ă r. Thus, Li,c moves prk, cq,
it can perform a ladder move at pr, cq. Contradiction. □

The following example is a demonstration of the previous two lemmas related to initial
segments.

Example 4.29. Let D be a diagram whose column 3 and 4 look like the picture on the left.
Notice that D will be fixed by L2,3. After applying L1,3, these two columns look like the
picture on the right:

3 4

L1,3
ÝÝÝÝÝÝÑ

3 4

We color the p2, 3q-initial segment of D and p1, 4q-initial segment of L1,3pDq. Notice that
L1,3 move cells to the p1, 4q-initial segment of L1,3pDq. Also notice that cells in column 3 is
moved if and only if it is in the p2, 3q-initial segment of D and has no cell on its right.

We also have the “converse statement” of Lemma 4.28.

Lemma 4.30. Suppose pi, cq R D. If Li,c only moves cells in the pi ` 1, cq-initial segment of
D, then it acts initially on D.
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Proof. Suppose to the contrary that D is not fixed by Li`1,c. Let pr, cq be the first cell moved
by Li`1,c. Clearly, pr, cq is not in the pi` 1, cq-initial segment of D and it will also be moved
by Li,c. □

We introduce more definitions that captures the structure of columns for intermediate
diagrams during our algorithm.

Definition 4.31. We say a diagram D is pi, cq-paired if the following are satisfied:

‚ Take any cell pR, cq P D with i ď R and pR, c ` 1q R D. There exists pr, c ` 1q P D
with i ď r ă R and pr, cq R D. Moreover, pr1, cq, pr1, c ` 1q P D for any r ă r1 ă R.

‚ Take any cell pr, c ` 1q P D with i ď r and pr, cq R D. There exists pR, cq P D with
r ă R and pR, c ` 1q R D. Moreover, pr1, cq, pr1, c ` 1q P D for any r ă r1 ă R.

Remark 4.32. Notice that if D is pi, cq-paired, then Li,c fixes D.

Example 4.33. Consider the following diagram D.

1 2 3 4 5 6 7 8 9 10
1
2
3
4
5
6
7
8

Then D has the following properties: p1, 5q-paired, p1, 9q-paired, p4, 1q-paired, p6, 1q-paired.

We have the following lemma regarding this new notion.

Lemma 4.34. Let diagram D be p3, cq-paired and p2, c ` 1q R D. We consider the action
of L1,c`1L2,cL3,c´1 on D. Assume L3,c´1 and L2,c act initially. Let pr1, cq, ¨ ¨ ¨ , prm, cq be the
cells moved by L2,c with r1 ă ¨ ¨ ¨ ă rm and let r0 “ 2. We further assume L1,c`1 moves
pr1

1, c` 1q, ¨ ¨ ¨ , pr1
m, c` 1q with ri´1 ď r1

i ă ri. Then D1 “ L1,c`1L2,cL3,c´1pDq is p2, cq-paired.

Example 4.35. Consider the action of L1,c`1L2,cL3,c´1 on D whose column c and c ` 1 are
depicted in the left-most figure. We see D is p3, cq-paired. The action of L2,c and L1,c`1

satisfy the condition in Lemma 4.34: For instance, L2,c moves p5, cq to p2, c ` 1q and there
is a unique cell pr, c ` 1q moved by L1,c`1 with 2 ď r ă 5, namely p3, c ` 1q. Then by
the Lemma, we know L1,c`1L2,cL3,c´1pDq, whose column c and c ` 1 are depicted in the
right-most figure, is p2, cq-paired.
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c
1
2
3

L3,c´1
ÝÝÝÝÑ

c
1
2
3

L2,c
ÝÝÑ

c
1
2
3

L1,c`1
ÝÝÝÝÑ

c
1
2
3

Proof. Say pt, cq is the bottom-most cell in the p2, cq-initial segment of L3,c´1pDq. Since L3,c´1

acts initially on D, it will only move cells to the p2, cq-initial segment by Lemma 4.27. Since
L2,c acts initially on D, it will only move cells in the p2, cq-initial segment by Lemma 4.28.
Then by our assumption in the lemma, L1,c`1 also moves cells above row t. Thus, D and D1

agreed under row t in column c and c ` 1. Now we check D1 is p2, cq-paired.
Take pR, cq in D1 such that R ě 2 and pR, c ` 1q R D1. We find the r satisfying the

condition in the definition of p2, cq-paired by considering two cases.

‚ If R ą t, then pR, cq P D and pR, c ` 1q R D. Since D is p3, cq-paired, we can find
pr, c`1q P D such that 2 ď r ă R, pr, cq R D and pr1, cq, pr1, c`1q P D for r ă r1 ă R.
It remains to show r ą t. If not, pr, cq is in the p2, cq-initial segment of L3,c´1pDq,
then so is pR, cq, contradicting to R ą t.

‚ If R ď t, then pR, cq P L3,c´1pDq. If pR, c`1q R L3,c´1pDq, by Lemma 4.28, L2,c moves
pR, cq. Since pR, cq is in D1, we know it is the last cell moved by L2,c, so R “ rm.
By Lemma 4.25, L2,c moves prm, cq to prm´1, c ` 1q. We have prm´1, cq R D1. By our
assumption on L1,c´1, it does not make a regular ladder move on cells between row
rm´1 and row rm. Thus, we may pick r “ rm´1.

Now assume pR, c ` 1q P L3,c´1pDq. Then, L1,c`1 moves pR, c ` 1q, so R “ r1
i for

some i P rm ´ 1s. We know L2,c moves pri, cq to pri´1, c ` 1q. By our assumption on
L1,c`1, ri´1 ă r1

i and L1,c`1 does not make a move between row ri´1 and r1
i. Thus, we

may pick r “ ri´1.

Take pr, c`1q in D1 such that r ě 2 and pr, cq R D1. We find the R satisfying the condition
in the definition of p2, cq-paired by considering two cases.

‚ If r ą t, then pr, c ` 1q P D and pr, cq R D. Moreover, since p2, c ` 1q R D, we
know r ě 3. By D is p3, cq-paired, we can find R ą r ą t such that pR, cq P D,
pR, c ` 1q R D and pr1, cq, pr1, c ` 1q P D for r ă r1 ă R.

‚ If r ď t, then pr, cq P L3,c´1pDq. We know L2,c performs a regular ladder move on
pr, cq, so r “ ri for some i P rm´1s. We know ri ă r1

i`1 ă ri`1 and pr1, cq, pr1, c`1q P

L2,cL3,c´1pDq for ri ă r1 ă ri`1. If i ` 1 ă m, then L1,c`1 makes a regular ladder
move on pr1

i`1, c ` 1q. We have pr1
i`1, cq P D1 and pri`1, c ` 1q R D1. We may pick

R “ r1. If i ` 1 “ m, then L1,c`1 makes a K-ladder move on pr1
i`1, c ` 1q. We may

pick R “ ri`1. □

The last piece of our preparation work is the following observation.
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Remark 4.36. Notice that Li,c and Li1,c1 commute if |c´c1| ą 1. Therefore, we know applying

L1,1L1,2 ¨ ¨ ¨L1,n´2 L2,1L2,2 ¨ ¨ ¨L2,n´3

is the same as applying

L1,1 L1,2L2,1 L1,3L2,2 ¨ ¨ ¨ L1,n´4L2,n´3 L1,n´2L2,n´3.

Moreover, each Li,c behaves the same in both expressions.

Now we embark on proving Proposition 4.17 and Corollary 4.19. We start by introducing
two claims which will imply Proposition 4.17 and Corollary 4.19 respectively. For a diagram
D, let DÓk be the diagram obtained by shifting all cells of D downward by k. We claim:

‚ Claim 1: Take N P Zą0 and w P SN . Consider

pL1,2L2,1q ¨ ¨ ¨ pL1,N´2L2,N´3qpL1,NL2,N´1qp pP pwq
Ó2

q. (4)

Take any c P rN ´ 1s. Then L2,c and L1,c`1 moves the same number of cells. More
specifically, suppose L2,c moves a cell pr, cq to pr̂, c`1q. Then there exists a unique r1

such that r̂ ď r1 ă r and pr1, c ` 1q is moved by L1,c`1. In addition, after the action
of L1,c`1, the diagram is p2, cq-paired.

‚ Claim 2: Take N P Zą0 and w P SN . Consider

L1,1 ¨ ¨ ¨L1,N´1p pP pwq
Ó1

q.

Each L1,c acts initially.

We will inductively show both claims hold for allN . The induction is based on Lemma 4.37
and Lemma 4.38.

Lemma 4.37. Suppose Claim 1 and Claim 2 hold for N ď n, then Claim 2 holds for
N “ n ` 1.

Proof. Suppose w “ pb, uq P Sn`1. Let D be the diagram obtained by putting b left-justified

cells in the second row of pP puqÓ2. Then pP pwqÓ1 “ L2,1L2,2 ¨ ¨ ¨L2,n´1pDq and each L2,c acts

initially by Claim 2 for u. By Remark 4.36, we may write L1,1 ¨ ¨ ¨L1,N´1p pP pwqÓ1q as

L1,1 ¨ ¨ ¨L1,N´1 L2,1 ¨ ¨ ¨L2,n´1pDq “ pL1,2L2,1q ¨ ¨ ¨ pL1,N´2L2,N´3qpL1,NL2,N´1qpDq. (5)

Clearly, for c ď b, L1,c acts initially on pP pwqÓ1. Now take c ą b. We know the L1,c behaves
the same in both sides of (5). By Lemma 4.30, it is enough to show each L1,c on the right
hand side moves cells in the p2, cq-initial segment. Since L2,c´1 acts initially, by Lemma 4.27,
L2,c´1 move cells into the p2, cq-initial segment. Then by claim 1 of u, L1,c moves cells in the
p2, cq-initial segment. □

Lemma 4.38. Suppose Claim 1 holds for N ď n and Claim 2 holds for N ď n ` 1, then
Claim 1 holds for N “ n ` 1.

Proof. Since Claim 2 holds for N ď n ` 1, each L1,c and L2,c in (4) acts initially by Re-
mark 4.36. We prove Claim 1 by induction on c “ n, ¨ ¨ ¨ , 2, 1. The base case with c “ n is
trivial.

Suppose c P rn´1s. Let D1 be the diagram right before applying L2,c in (4). By our induc-
tive hypothesis for c` 1, D1 is p2, c` 1q-paired. Now apply L2,c to D1. Let pr1, cq, ¨ ¨ ¨ , prk, cq
be the cells moved by L2,c. Let r0 “ 2. For j P rks, by Lemma 4.25, prj, cq is moved to
prj´1, c ` 1q. By Lemma 4.27, prj´1, c ` 1q is in the p2, c ` 1q-initial segment of L2,cpDq. We
consider two cases.
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‚ If prj´1, c ` 2q R D1, then prj´1, c ` 1q will be moved by L1,c`1 by Lemma 4.28. For
rj´1 ă r1 ă r, by D1 is p2, c ` 1q-paired, we know pr1, c ` 1q, pr1, c ` 2q P D1. By
Lemma 4.28, L1,c`1 will not move pr1, c ` 1q.

‚ Now assume prj´1, c`2q P D1. Since D1 is p2, c`1q-paired and prj´1, c`q R D1, we can
find R ą rj´1 such that pR, c ` 1q P D1, pR, c ` 2q R D and pr1, c ` 1q, pr1, c ` 2q P D1

for any rj´1 ă r1 ă R. We know prj, c ` 1q R D1, so R ă rj. For R ă r1 ă rj, since
pr1, c ` 1q P D1 and D1 is p2, c ` 1q-paired, we must have pr1, c ` 2q P D1. By 4.28,
pR, c ` 1q is the unique cell moved during L1,c`1 between row rj´1 and row rj.

Now we show L1,c`1 and L2,c move the same number of cells, we already know L1,c`1 makes
exactly one move between row rj´1 and row rj inclusively for j P rks. We just need to show
L1,c`1 does not move any pr, c ` 1q for any r ą rk. Notice that prk, c ` 1q R L2,cpD

1q, so
pr, c ` 1q is not in the p2, c ` 1q-initial segment of L2,cpD

1q. By Lemma 4.28, pr, c ` 1q will
not be moved.

It remains to check L1,c`1L2,cpD
1q is p2, cq-paired. Write w as pb, uq. Let D be the diagram

obtained by putting b left-justified cells in row 3 of pP puqÓ3. Then

pP pwq
Ó2

“ L3,1L3,2 ¨ ¨ ¨L3,n´1pDq

By Remark 4.36,

pL1,2L2,1q ¨ ¨ ¨ pL1,n`1L2,nqp pP pwq
Ó2

q

“pL1,2L2,1q ¨ ¨ ¨ pL1,n`1L2,nqpL3,1L3,2 ¨ ¨ ¨L3,n´1qpDq

“pL1,2L2,1qpL1,3L2,2L3,1q ¨ ¨ ¨ pL1,n`1L2,nL3,n´1qpDq

If c ą b, then p3, cq R D. By claim 1 of u, after L2,c`1 the diagram is p3, cq-paired.
Therefore, by Lemma 4.34, after L1,c`1 the diagram is p2, cq-paired.

Now consider c ď b, so p3, cq P D. We consider three cases:

‚ Case 1: p3, cq is moved by L2,c and not the last cell moved by L2,c. Then L2,c performs
a regular ladder move on p3, cq moving it to p2, c`1q. Later, L1,c`1 will move p2, c`1q.
Since L1,c`1 and L2,c moves the same number of cells, we know L1,c`1 makes a regular
ladder move on p2, c ` 1q. By Remark 4.23, the action of L1,c`1L2,c is the same as
first moving p3, cq to p1, c ` 2q, and then perform L2,c`1L1,c`2. By Claim 1 of u, the
diagram after applying L1,c`1 is p3, cq-paired. Since p2, cq, p2, c ` 1q are not in the
diagram, it is p2, cq-paired.

‚ Case 2: p3, cq is the last cell moved by L2,c. Then L2,c performs a K-ladder move on
p3, cq moving it to p2, c ` 1q. Later, L1,c`1 will move p2, c ` 1q. Since L1,c`1 and L2,c

moves the same number of cells, we know L1,c`1 makes K-ladder move on p2, c ` 1q.
By Remark 4.23, the action of L1,c`1L2,c can be described as follows: Remove p3, cq,
perform L2,c`2L3,c, and then add cells p3, cq, p2, c ` 1q and p1, c ` 2q. By Claim 1 of
u, before adding those three cells, the diagram is p3, cq-paired. Thus, after adding
these three cells, the diagram is p2, cq-paired.

‚ If p3, cq is not moved by L2,c, then p3, c`1q P D. By Remark 4.23, applying L1,c`1L2,c

is the same as applying L2,c`2L3,c while ignoring row 3. By Claim 1 of u, after the
action of L1,c`1, the diagram is p2, cq-paired. □

Lemma 4.39. Claim 1 and 2 hold for all N P Zą0.

Proof. The claims are obvious whenN “ 1. Then we prove by induction onN . The inductive
step is given by Lemma 4.37 and Lemma 4.38. □
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Corollary 4.40. In (3), each Li,c acts initially.

Proof. Suppose w P Sn and we prove the corollary by induction on n. Suppose w “ pb, uq.
Since the corollary holds for u, we know Li,c in (3) acts initially when i ą 2. Finally, each
L1,c acts initially by Claim 2. □

Now we may prove the main results of this subsection using the two claims.

Proof of Proposition 4.17. We induct on n. The base cases n “ 2 is trivial. Now suppose
n ą 2 and take v “ pa, wq P Sn. Let D be the diagram obtained by putting a left-justified

cells in row 1 of pP pwqÓ1. The last iteration to compute pP pvq is to apply L1,1 ¨ ¨ ¨L1,n´2L1,n´2

on D. For c P ras, since L1,c acts initially and p1, cq P D, L1,c does not move any cells.
Now assume c ą a. We want to show L1,c moves exactly movecodepwqc cells. Let w “ pb, uq

and let D1 be the diagram obtained by putting b left-justified cells in the row 2 of pP puqÓ2.
Then,

L1,1 ¨ ¨ ¨L1,n´2L1,n´1pDq

“pL1,1 ¨ ¨ ¨L1,n´2L1,n´1qpL2,1 ¨ ¨ ¨L2,n´3L2,n´2qpD1
q

“pL1,1qpL1,2L2,1q ¨ ¨ ¨ pL1,n´1L2,n´2qpD1
q

For c ą b, by our induction hypothesis, applying L2,c moves exactly movecodepuqc cells.
Then by Claim 1, applying L1,c`1 to D also moves exactly movecodepuqc cells. Therefore
the number of cells moved by L1,c`1 is movecodepuqc “ movecodepwqc`1. Now clearly each
L2,c does not move any cells for c P rbs. We know L1,b`1 also moves no cells since the
p2, b ` 1q-initial segment is empty. Therefore L1,b`1 moves 0 “ movecodepwqb`1 cells.

Let c0 be the largest in rbs such that movecodepuqc0 “ 0. Say c0 “ 0 if no such c0 exists.
For c P rbs, by Lemma 4.20, we have

movecodepwqc “

#

movecodepuqc ` 1 if c ě c0.

movecodepuqc otherwise

We first inductively show that for c “ b, ¨ ¨ ¨ , c0 ` 1, there is no cell at p2, c ` 1q right
before the action of L1,c, so L1,c moves p2, cq. Moreover, L1,c moves movecodepwqc ą 2 cells,
so the move on p2, cq is a regular ladder move. For c “ b, we know p2, b ` 1q is always
empty. For c0 ă c ă b, we know L1,c`1 makes a regular ladder move on p2, c ` 1q, so
p2, c ` 1q is empty right before the action of L1,c. Now for c “ b, ¨ ¨ ¨ , c0 ` 1, after L1,c

moves p2, cq, it behaves as if L2,c by Remark 4.23. Thus, the total number of cells moved is
movecodepuqc ` 1 “ movecodepwqc.
Now consider L1,c0 when c0 ą 0. Right before its action, p2, c0`1q is empty. Thus, L1,c0 will

first move p2, c0q to p1, c0`1q. After that, the number of cells it moves ismovecodepuqc0 , which
is zero. Thus, the move on p2, c0q is a K-ladder move. Also, L1,c0 moves 1 “ movecodepwqc0
cell.

Finally, we prove by induction that for c “ c0´1, ¨ ¨ ¨ , 1, right before the action of L1,c, the
diagram contains p2, cq and p2, c ` 1q. For the base case, right before the action of L1,c0´1,
we know p2, c0q is in the diagram. Now assume right before the action of L1,c, the diagram
contains p2, cq and p2, c ` 1q for some c ă c0. Then L1,c will not move p2, cq. After the
action of L1,c, we know p2, cq is still in the diagram. The inductive step is finished. Now
by Remark 4.23, the action of L1,c moves the same number of cells as L2,c on the diagram
without p2, cq and p2, c ` 1q. Thus, L1,c makes movecodepuqc “ movecodepwqc moves. □
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Proof of Corollary 4.19. Implied by Corollary 4.40 and Lemma 4.25. □
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5. Bumpless vertical-less pipedreams

In this section, we introduce two new combinatorial objects. Marked bumpless pipedreams
that naturally recast pipedreams and bumpless vertical-less pipedreams that gives the first
direct combinatorial formula for the top degree homogeneous component of Grothendieck
polynomials Gwpxq.

5.1. Background. We define pGwpxq to be the top degree homogeneous component ofGwpxq.

Therefore, pGwpxq “
ř

P wtP pxq where the sum is over all P P PDpwq with rajpwq weighty
tiles. We start off with the following two properties of the raj statistic and an additional
lemma regarding pipedreams.

Proposition 5.1 ([PSW21, Proposition 3.8]). For w P Sn, rajpwq “ majpwq if and only if w
is fireworks. Here, the major index of w is defined as

majpwq “
ÿ

ti:wpiqąwpi`1qu

i

Corollary 5.2 ([PSW21, Corollary 4.5]). For w P Sn, rajpwq “ rajpw´1q.

Lemma 5.3. Say three pipes enter a row of a PD from the bottom: Pipe a enters on the left
of pipe b and pipe b enters on the left of pipe c. Suppose pipe a and pipe b have not crossed,
but pipe a and pipe c have crossed. Then pipe b and pipe c must have crossed.

Proof. Since pipe a enters the row on the left of pipe b and they did not cross, we have a ă b.
Since pipe a enters the row on the left of pipe c and they have crossed, we have c ă a. Thus,
c ă a ă b. Since pipe b enters the row on the left of pipe c, they have crossed. □

5.2. Marked vertical-less pipedreams. We introduce combinatorial objects which we call
marked vertical-less pipedreams (MVPD). An MVPD can be obtained by removing certain
pipes from a PD. We rephrase the formulas in Theorem 3.9 and obtain MVPD formulas for
Gwpxq and Gwpx,yq in Corollary 5.10.

Definition 5.4. A vertical-less pipedream (VPD) consists of the following six tiles:

, , , , , ,

on an n ˆ n grid. Notice that we are not using the vertical tile . The pipes of a VPD
enter from the left edge of the n ˆ n grid and exit from the top edge. We trace pipes from
left to top in the same way as PDs. The pipe entering from row p is called pipe p. A marked

vertical-less pipedreams (MVPD) is a VPD where some are marked as ‚ . The pipe in a

marked tile must have a on the left of this tile.

The column-to-row code of a MVPD M is a sequence of n numbers. If there is no pipe
exiting at column c of M , then the cth entry is 0. Otherwise, say pipe r exits in column c,
then the cth entry is r. When drawing a MVPD, we omit blank rows on the bottom and
blank columns to the right.

Example 5.5. Suppose n “ 8. The following is a MVPD which has column-to-row code
p0, 0, 0, 4, 0, 3, 0, 6q. Notice that p1, 2q, p2, 1q, and p5, 1q cannot be marked while p3, 4q may or
may not be marked.
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‚

‚ ‚

For a MVPD M , we let wtypMq be the set of pi, jq that is , or ‚ in M . We define

wtMpxq “
ź

pi,jqPwtypMq

xi, wtMpx,yq “
ź

pi,jqPwtypMq

pxi ` yj ´ xiyjq

We associate certain MVPDs to each permutation w P Sn. The left-to-right maximums
of w P Sn are the numbers wpiq such that wpjq ă wpiq for all j ă i. For instance, the
left-to-right maximums of the permutation with one-line notation 2143 are 2 and 4.

Remark 5.6. Notice that in the one-line notation of a permutation, its left-to-right maximums
must increase from left to right. Consequently, in P P PDpwq, pipes labeled by left-to-right
maximums of w´1 cannot cross.

Take w P Sn. We start from pw´1p1q, ¨ ¨ ¨ , w´1pnqq and turn the left-to-right maximums
of w´1 into 0. Let α1pwq be the resulting sequence. Finally, define MVPDpwq as the set of
MVPDs with column-to-row code α1pwq.

Example 5.7. Take w P Sn such that w´1 has one-line notation 3142. We have α1pwq “

p0, 1, 0, 2q. The set MVPDpwq has the following three elements:

‚

We describe a bijection from PDpwq to MVPDpwq. Take P P PDpwq for some w P Sn. Let

p1, ¨ ¨ ¨ , pk be the left-to-right of w´1. We may remove the pipes p1, ¨ ¨ ¨ , pk. If a becomes

a after the removal, we mark it as ‚ . Let ΦpP q be the resulting tiling.

Example 5.8. Suppose n “ 8. Consider w P S8 where w´1 has one-line notation 12547386.
The left-to-right maximums of w´1 are 1, 2, 5, 7 and 8. We consider the following P P PDpwq

where pipe 1, pipe 2, pipe 5, pipe 7 and pipe 8 are colored red.
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Readers may check ΦpP q would be the MVPD in Example 5.5.

Proposition 5.9. The map Φ is a bijection from PDpwq to MVPDpwq that preserves wtyp¨q

Proof. Take any P P PDpwq and consider ΦpP q. First, if both P and ΦpP q has pipe p, then
it travels the same in P and ΦpP q. We now check ΦpP q P MVPDpwq.

‚ We make sure ΦpP q has no . Suppose to the contrary that ΦpP q at pi, jq is a ,

then P must have a at pi, jq. Let pipe p (resp. q) be the pipe going horizontally
(resp. vertically) in this tile. Then we know pipe p is removed by Φ, so p is a left-to-
right maximum of w´1. However, since pipe p and pipe q crossed in this tile, we know
p ă q and q appears on the left of p in the one-line notation of w´1, contradicting to
p being a left-to-right maximum of w´1.

‚ Assume pipe p has ‚ at pi, jq of ΦpP q, we check pipe p has a before. We know P

has a at pi, jq. Let pipe q be the other pipe in pi, jq of P , so this pipe is removed
by Φ. We know pipe p and pipe q already crossed before pi, jq in P , say at pi1, j1q.

Then after removing pipe q, the pi1, j1q becomes in ΦpP q.

We have checked ΦpP q is a valid MVPD. Clearly, ΦpP q has column-to-row code α1pwq, so

it is in MVPDpwq. We check Φ preserves wtyp¨q. Take a in P . We check it becomes a
weighty tile in ΦpP q. Say pipe p exits from the top and pipe q exits from the right of this

. By 5.6, it is impossible that both pipe p and pipe q are removed by Φ, so this will

not become a . It also cannot become a : If so, we know q is a left-to-right maximum
in w´1, q ă p, and q ends up on the right of p in w´1. This is a contradiction. It is also

obvious that this cannot be mapped to or by the rules of Φ. Therefore Φ maps

to weighty tiles. On the other hand, for any in P , they cannot be mapped to , , or
‚ by the rules of Φ.
Thus, Φ is a wtyp¨q preserving map from PDpwq to MVPDpwq. It remains to construct its

inverse. Take M P MVPDpwq. We change the cell pi, jq based on the following:

‚ If it is ‚ or , it becomes .

‚ If it is , we know i ` j ď n ` 1. If i ` j ă n, we change it into .

‚ If it is , we turn it into .

‚ Finally, suppose it is . If i` j ă n, we turn it into . If i` j “ n, we turn it into

.

Clearly, we obtain a PD P by adding pipes to each tile. We claim for each pipe in M , it
goes in the same way in both P and M . In addition, the added pipes in P belong to pipes
which do not exist in M . We prove by induction on the tiles from bottom to top, and left
to right in each row. Consider the tile pi, jq

‚ If pi, jq is a containing pipe p in M , it becomes a in P . We need to verify
that pipe p goes horizontally in pi, jq of P . Let pipe q be the pipe entering from the
bottom of pi, jq in P , so pipe q does not exist in P . Assume toward contradiction
that p does not go horizontally in pi, jq. Then pipe p and pipe q have already crossed,

where the pipe p travels vertically. Then the corresponding cell in M would be a ,
which is impossible.

‚ If pi, jq is a ‚ containing pipe p in M , it becomes a in P . We need to verify that
pipe p does not go vertically in pi, jq of P . Let pipe q be the pipe entering from the
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left of pi, jq in P , so pipe q does not exist in P . We need to show pipe p and q have

crossed before. Since pi, jq is ‚ in M , we may find a containing pipe p under

row i. In P , it becomes a where pipe p crosses with some added pipe, say pipe t.
If t “ q, we are done. Otherwise, we know the added pipes cannot cross. Thus, the
three pipes enter row i with the order t, q, p from left to right. By Lemma 5.3, we
know pipe q and p have crossed.

‚ The other cases of pi, jq is straightforward to check.

Say P P PDpuq. The claim above says the kth entry of α1pwq, if non-zero, agrees with
u´1pkq. Since the added pipes are not crossing, we know u´1pkq is obtained from α1pwq by
turning 0s into the missing numbers in increasing order, which yields w´1. Thus, u “ w and
the map defined above sends MVPDpwq to PDpwq. It is clearly the inverse of Φ. □

Corollary 5.10. For w P Sn, we have

Gwpxq “
ÿ

MPMVPDpwq

p´1q
|wtypMq|´ℓpwqwtMpxq,

Gwpx,yq “
ÿ

MPMVPDpwq

p´1q
|wtypMq|´ℓpwqwtMpx,yq.

Proof. Follows from Theorem 3.9 and Proposition 5.9. □

5.3. Describing the BVPD formula. We introduce bumpless vertical-less pipedreams

(BVPD) as the first direct combinatorial formula for pGwpxq when w is inverse fireworks.
Specifically, we are interested in the special case when w is inverse fireworks because Pechenik,

Speyer, and Weigandt [PSW21] showed that each pGwpxq is an integer multiple of pGupxq for
some inverse fireworks permutation u. Thus, for any w P Sn, we may find its associated

inverse fireworks permutation u and determine pGwpxq using BVPDpuq.
BVPDs consist of tilings where the following five types of tiles are placed

, , , ,

on an n ˆ pn ´ 1q grid. The pipes of a BVPD enter from the left edge and exit from the

top edge. We trace pipes from left to top. For each , we trace the pipes in the same way
as PDs and MVPDs. We name the pipe entering from row p as pipe p. When drawing a
BVPD, we omit blank rows on the bottom and blank columns to the right.

Example 5.11. Let n “ 6. The following is a BVPD

with pipe 2 going to column 5 and pipe 3 going to column 4.

The column-to-row code of a BVPD is a sequence of n ´ 1 numbers, defined similarly as
that of a MVPD. The column-to-row code of the BVPD in Example 5.11 is p0, 0, 0, 3, 2q.

Take w P Sn be inverse fireworks. We obtain a sequence αpwq as follows. We start from
the sequence pw´1p1q, ¨ ¨ ¨ , w´1pnqq and set the first number in each decreasing run to be 0.
Then αpwq is obtained by removing the first entry. Notice that αpwq can be obtained from
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α1pwq by removing the first entry. Let BVPDpwq be the set of all BVPDs with column-to-row
code αpwq.

Example 5.12. Say n “ 6 and w has one-line notation 165234. Thus, w´1 has one-line
notation 145632 where 1, 4, 5 and 6 are the first numbers in the decreasing runs. We have
αpwq “ p0, 0, 0, 3, 2q, so BVPDpwq consists of all BVPDs with pipe 2 going to column 5, pipe
3 going to column 4, and there are no other pipes. There are six such BVPDs:

x2
1x

4
2x

3
3 x3

1x
3
2x

3
3 x4

1x
2
2x

3
3

x3
1x

4
2x

2
3 x4

1x
3
2x

2
3 x4

1x
4
2x

1
3

Finally, define the weighty tiles of a BVPD B, denoted as wtypBq, as the set of pi, jq that

is , or in B. Let the weight of B, denoted as wtBpxq, be the monomial Πpi,jqPwtypBqxi.
We write the weight of each BVPD under itself in Example 5.12.

Theorem 5.13 ([CY24, Theorem 4.3]). For inverse fireworks w, we have

pGwpxq “
ÿ

BPBVPDpwq

wtpBq

Continuing on Example 5.12. If w has one-line notation 165234, then

pGwpxq “ x2
1x

4
2x

3
3 ` x3

1x
3
2x

3
3 ` x4

1x
2
2x

3
3 ` x3

1x
4
2x

2
3 ` x4

1x
3
2x

2
3 ` x4

1x
4
2x

1
3.

Theorem 5.14 ([CY24, Theorem 4.4]). For w inverse fireworks, there exists a bijection Ψ

from BVPDpwq to {PDpwq that preserves the positions of weighty tiles.

Roughly speaking, for B P BVPDpwq, ΨpBq is the pipedream with a at row i column j

for each pi, jq P wtypBq and no elsewhere. This result also characterizes the pipedreams

of w with the maximal number of when w is inverse fireworks.

5.4. Proof of Theorem 5.13 and Theorem 5.14. We start with one simple property on
the number of weighty tiles in a MVPD. For w P Sn, define rpwq :“

ř

i i ´ 1 where i ranges
over all number such that the ith number in α1pwq is non-zero.

Lemma 5.15. Take M P MVPDpwq. Let k be the number of and in M . We have
|wtypMq| “ rpwq ´ k.

Proof. We first associate each tile in M that is not or to each pipe. These tiles must

be , , , ‚ or . We associate each such tile to the pipe that exits from the right.
Take an arbitrary pipe p and suppose it goes to column cp. In other words, the cth number

in α1pwq is p. For each column i, we count the number of cells associated with pipe p in this
column:
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‚ If the pipe p exits column i and goes to column i`1 (i.e. 1 ď i ă cp), there is exactly
one tile associated with pipe p in column i.

‚ Otherwise (i.e. i ě cp), there is no tile associated with pipe p.

Now there are cp ´ 1 tiles associated with the pipe p. Let kp be the number of and
associated with pipe p. The number of weighty tiles associated with p is pcp ´ 1q ´ kp. We
have

|wtypMq| “
ÿ

pipes p in M

wtppq “
ÿ

pipes p in M

pcp ´ 1q ´ kp

“
ÿ

pipes p in M

pcp ´ 1q ´
ÿ

pipes p in M

kp “ rpwq ´ k. □

Let {MVPDpwq be the subset of MVPDpwq with maximal number of weighty tiles. Recall

that rajpwq is the degree of Gwpxq, so an element of {MVPDpwq has rajpwq weighty tiles. We

can describe {MVPDpwq of inverse fireworks w as follows.

Lemma 5.16. Let w be an inverse fireworks permutation. Then {MVPDpwq consists of

elements in MVPDpwq without and .

Proof. By Lemma 5.15, it remains to show rpwq is the maximal number of weighty tiles of
an element in MVPDpwq, which is rajpwq. By Corollary 5.2, rajpwq “ rajpw´1q. Since w´1 is
fireworks, by Proposition 5.1, rajpw´1q “ majpw´1q. It remains to check rpwq “ majpw´1q.

Recall that rpwq “
ř

iPIpi´ 1q, where I “ ti : ith entry of α1pwq is not 0u. In other words,
I consists of all i such that w´1piq is not a left-to-right maximum of w´1. Since w´1 is
fireworks, I consists of i such that w´1piq is not the first number in its decreasing run. Then
we have

ti ´ 1 : i P Iu “ tj : w´1
piq is not the last number in its decreasing runu

“ tj : w´1
pjq ą w´1

pj ` 1qu.

Thus, rpwq “
ř

iPIpi ´ 1q “
ř

j:w´1pjqąw´1pj`1q
j “ majpw´1q. □

Corollary 5.17. The first column of any M P {MVPDpwq only consists of and .

Proof. Suppose not. Say pipe p has a in column 1 of M . We know w´1p1q is a left-to-right
maximum in w´1, so the first entry in α1pwq is 0. In other words, pipe p must exit column
1. Find the cell in column 1 where pipe p exits enters from the bottom and exits from the

right. By M P {MVPDpwq and Lemma 5.16, this cell can only be where the two pipe or
‚ . It cannot be a since pipe p has not crossed with the pipe entering from the left. It

cannot be a ‚ since pipe p does not have a before. Contradiction. □

Now it remains to establish a bijection from {MVPDpwq to BVPDpwq. We describe the map

ΦMÑB as follows. Take M P {MVPDpwq, we remove its first column and change all ‚ into

, obtaining a tiling B. The inverse of this map, denoted as ΦBÑM is also straightforward:

Add a column on the left of B consisting of and and change all in B into ‚ .

Proposition 5.18. The maps ΦMÑB and ΦBÑM are bijections between {MVPDpwq and
BVPDpwq that preserve wtyp¨q
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Proof. Say ΦMÑB sends M P {MVPDpwq to B. Since M has neither nor , B is a BVPD.
Recall that αpwq is obtained from α1pwq by removing the first 0. Since M has column-to-row
code α1pwq, we know B has column-to-row code αpwq, so B P BVPDpwq. The two maps
are clearly inverses of each other. To show the bijections preserve wtyp¨q, we present the
following example. □

Example 5.19. The left diagram is M P {MVPDpwq and the left diagram is ΦMÑBpMq “ B P

BVPDpwq. Their weighty tiles (highlighted yellow) agree.

‚

‚

‚

‚

‚

‚

‚

‚

‚

Now we prove the main results of this section.

Proof of Theorem 5.13. By Corollary 5.10, pGwpxq “
ř

MP {MVPDpwq
wtMpxq. Then by Proposi-

tion 5.18,
ř

MP {MVPDpwq
wtMpxq “

ř

BPBVPDpwq
wtBpxq. □

Proof of Theorem 5.14. Take B P BVPDpwq. To obtain P P {PDpwq, we simply apply ΦBÑM

to B, followed by the bijection from MVPDpwq to PDpwq. Both maps preserve wtyp¨q, so
wtypBq “ wtypP q. □
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6. Conjecture 6.3 for inverse fireworks permutations

In this section, we prove Conjecture 6.3 for inverse fireworks permutations using MVPDs

defined in Section 5. Our approach is constructive: For M P MVPDpwqz {MVPDpwq, we
construct M 1 such that wtMpxqxi “ wtM 1pxq for some i using “droop moves”.

6.1. Support of Grothendieck. We start by introducing several conjectures by Mészáros,
Setiabrata, and St. Dizier [MSSD22] on the support of Grothendieck polynomials.

Definition 6.1. For f P Zrx1, . . . , xns where f “
ř

αPZn
ě0

cαx
α, the support of f is

Supppfq “ tα P Zn
ě0 : cα ‰ 0u

It is the set of monomials of f with non-zero coefficients.

For α, β P Zn
ě0, we say α ď β if αi ď βi for all i. We say α ă β if α ď β and αj ă βj

for some j. Let |α| be the sum of all αi. For a fix w P Sn, we have the following three
conjectures on SupppGwpxqq.

Conjecture 6.2 ([MSSD22, Conjecture 1.1]). If α P SupppGwq and |α| ă degpGwq, then
there exists β P SupppGwq such that α ă β.

Conjecture 6.3 ([MSSD22, Conjecture 1.2]). If α P SupppGwq and |α| ă degpGwq, then
there exists β P SupppGwq such that α ă β and |α| ` 1 “ |β|.

Conjecture 6.4 ([MSSD22, Conjecture 1.3]). If α, γ P SupppGwq, then

tβ : α ď β ď γu Ď SupppGwq

Each conjecture is strictly stronger than the previous one. Mészáros, Setiabrata, and
St. Dizier proved these conjectures for Grassmannian permutations [MSSD22], which was
later generalized to vexillary permutations by Hafner [Haf22]. Mészáros, Setiabrata, and St.
Dizier also proved Conjecture 6.2 for fireworks permutations. We prove Conjecture 6.3 for
inverse fireworks permutations. The same result was proved by Anna Weigandt separately
using a different method.

6.2. Properties of MVPD. Let w P Sn be an arbitrary permutation in this section. We
start with two observations on MVPDpwq.

Lemma 6.5. Take M P MVPDpwq. For every pipe, we can find a in M containing that
pipe.

Proof. Consider the pipe from row r of M . We know r appears in α1pwq, so r is not a left-
to-right maximum in w´1. Say m ą r is a number on the left of r in w´1. In the pipedream

corresponding to M , there must be a where the pipe from row r goes from left to right
and the pipe from row m goes from bottom to top. To obtain M from this pipedream, we

remove the pipe from row m, so this tile becomes a . □

We say a of M is a real crossing if its two pipes really cross in it (i.e. the pipe entering

from the bottom exits from top). Otherwise, we say the is a fake crossing .

Lemma 6.6. Take M P MVPDpwq. Say pipe p and pipe q have a real crossing in pi, jq and
a fake crossing in pi1, j1q. We consider the region enclosed by the two pipes from pi, jq to
pi1, j1q. For any pipe that appears in this region, it must cross with both pipe p and pipe q.
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Proof. For a pipe t to enter or exit this region, it must cross with pipe p or pipe q. Since
two pipes cannot cross more than once, pipe t must cross both pipe p and pipe q. □

Next, we define the droop moves on MVPDs, which look similar to the droop moves on
bumpless pipedreams introduced in [LLS21].

Definition 6.7. Take M P MVPDpwq. We define drooppi,jqpMq if the following are all satisfied

‚ The tile pi, jq contains a pipe entering from the bottom and exits from the right (i.e.

It is a , ‚ , or a fake crossing).

‚ The tile pi, j ` 1q is a .

‚ Let i1 ą i be the smallest such that pi1, jq is not .Then pi1, jq is a .

For each i ă r ă i1, we know pr, jq is a . A simple induction would imply that pr, j ` 1q

has no pipe entering from the bottom. Thus, pr, j ` 1q is and pi1, j ` 1q is , ‚ or .
The operation droopp¨q does the following to column j and j ` 1 between row i and row i1.

‚ Change pi, jq from or fake crossing to . Change pi, jq from or ‚ to .

‚ Change pi, j ` 1q from to .

‚ For i ă r ă i1,change pr, jq from to and change pr, j ` 1q from to .

‚ Change pi1, jq from to .

‚ Change pi1, j ` 1q from or ‚ to . Change pi1, j ` 1q from to .

We also define droop1
pi,jqpMq on such pi, jq and M . It first performs drooppi,jq. Then notice

that the pipe in pi, j ` 1q of drooppi,jqpMq must have a in pr, jq for some i ă r ď i1. We

may mark the pipe in pi, j ` 1q, obtaining a valid MVPD droop1
pi,jqpMq.

Example 6.8. We give two examples of the effect of droop1
pi,jq and drooppi,jq.

i

i1

j

droop1
pi,jq

ÝÝÝÝÝÑ

‚i

i1

j

‚

i

i1

j

drooppi,jq

ÝÝÝÝÝÑ

i

i1

j

Lemma 6.9. Take M P MVPDpwq. Then drooppi,jqpMq and droop1
pi,jqpMq are both in

MVPDpwq if they are defined.

Proof. Let i1 ą i be the smallest such that pi1, jq is not . We just need to show that the
same pipe exits from the right edge of pr, j ` 1q for i ď r ă i1 in M and drooppi,jqpMq. To
prove this, we claim: For i ă r ď i1, if a pipe exits from the top of pr, jq in M , then the same
pipe exits from the top of pr, j ` 1q in drooppi,jqpMq. We prove by induction on r. The base
case when r “ i1 is immediate. Now suppose i ă r ă i1. Say pipe p enters pr, jq from the left
and pipe q enters pr, jq from the bottom in M . Then pipe maxpp, qq exits from the the top
of pr, jq. The other pipe exits from the right of pr, j ` 1q. By our inductive hypothesis, pipe
p enters pr, j ` 1q from the left and pipe q enters pr, j ` 1q from the bottom in drooppi,jqpMq.
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Pipe maxpp, qq exits from the the top of pr, j ` 1q, and the other pipe exits from the right.
Our inductive step is finished. □

Finally, we study a special family of MVPDs.

Definition 6.10. A M P MVPDpwq is called saturated if it satisfies both of the following.

‚ For any in M , the pipe in it does not have before.

‚ For any , the two pipes in it do not cross in M .

In other words, an M P MVPDpwq is not saturated if we can turn one of its to or

to ‚ and still remain in MVPDpwq.

Lemma 6.11. Take a saturated M P MVPDpwq. Say a pipe p enters the tile pi, jq from the
bottom and exits from the right. Then pi, j ` 1q cannot be a real crossing.

Proof. Suppose there exists such pi, jq. We pick one such pi, jq where i is maximal. Say pipe
p enters from the bottom of pi, jq and say it crosses with pipe q in pi ` 1, jq. We know these

two pipes have not crossed before pi, j ` 1q. Moreover, since M is saturated, there is no
in M involving pipe p and pipe q. As a conclusion, under row i, there is no tile containing
both pipe p and pipe q.

Find i1 ą i such that pipe p enters on the left edge of pi1, jq. We know pipe p goes from
bottom to top of pr, jq for i ă r ă i1. Say pipe q enters on the left edge of pi2, j ` 1q. We
have i2 ą i since otherwise, pi2, jq would be a tile containing both pipe p and pipe q. Pipe q
goes from bottom to top of pi2, j ` 1q, so this tile is a real crossing. Consider the tile pi1, jq.
It contains pipe p which enters on the left and exits on the top. Thus, it also must contains
a pipe entering from the bottom and exits on the right. We reach a contradiction since we
picked the maximal i. □

Here is an illustration of the proof of Lemma 6.11. We make pipe p green and pipe q red.

i

i1

j

6.3. Construction. Fix inverse fireworks w in throughout this section. For each M P

MVPDpwqz {MVPDpwq, our goal is to construct M 1 such that wtM 1pxq “ wtMpxqxi for some i.

If M is not saturated, we can find the M 1 easily: Say M has an and the pipe in it has

a before, we simply mark the and obtain M 1. Otherwise, say M has a where the

two pipes in it cross somewhere else. We may turn this into and the resulting MVPD
is still in MVPDpwq. It remains to consider saturated M . Our construction relies on the
operator droop1

i,jp¨q, which requires us to find an occurrence of or in M . That is, a

or with a immediately on its right.

Lemma 6.12. Take a saturated M P MVPDpwqz {MVPDpwq. In M , there exists or .
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Proof. Since M R {MVPDpwq, by Lemma 5.16, M must have a or . Let pi, jq be the

highest, or one of the highest, such tile. We prove pi, j ` 1q must be by contradiction.

Suppose pi, j ` 1q is not a . Let pipe p be the pipe that enters pi, jq from the bottom and
exits on the right. By Lemma 6.11, pi, j`1q cannot be a real crossing. Thus, pi, j`1q can be

a fake crossing, a , or a . In any case, pipe p must exits on the top of pi, j `1q. Then we

present two different arguments based on whether pi, jq is or . Both arguments follow
the following three steps:

‚ Step 1: Show pipe p must exits column j ` 1. Say it exits from the right edge of
pi1, j ` 1q for some i1 ă i.

‚ Step 2: We know pi1, j ` 1q cannot be or by how we picked pi, jq. We show

pi1, j ` 1q cannot be an ‚ , so it must be a fake crossing.
‚ Step 3: Find a contradiction.

We start with the case where pi, jq is a bump. Let pipe q be the pipe exiting from the top
of pi, jq. Since M is saturated, we know pipe p and pipe q never cross in M , so q ă p. Now
we perform the three steps and eventually show pipe p and pipe q must cross, which would
be a contradiction.

‚ Step 1: Suppose pipe p does not exit column j ` 1. Since pipe p and q cannot cross,
pipe q does not exit column j. In other words, αpj ` 1q “ p and αpjq “ q. Then
w´1pj ` 2q “ p and w´1pj ` 1q “ q. Since q ă p, p is actually the first number in
its decreasing run in w´1, so p cannot appear in αpwq. We reach a contradiction, so
pipe p must exit column j ` 1.

‚ Step 2: We know pipe p goes from the bottom to top in pr, j ` 1q for i1 ă r ă i.
Since pipe q cannot cross with pipe p, it must also go from bottom to top in pr, jq

for i1 ă r ă i. Thus, pipe q enters pi1, jq from the bottom. The tile pi1, jq must have
some pipe exiting from the right. Thus, pi1, j ` 1q has a pipe entering from the left,

so it cannot be ‚ . It must be a fake crossing.
‚ Step 3: Let pipe t be the pipe that enters pi1, j ` 1q from the left. Since pi1, j ` 1q

is a fake crossing, pipe t and pipe p must have a real crossing under row i. Then
pipe t must exits row i on the left of pipe p. Since pipe p exits row i on column
j ` 1 and pipe q exits row i on column j, we know pipe t exits row i on the left of
column j. Now consider the region enclosed by pipe p and t from their real crossing
to pi1, j ` 1q. Pipe q appears in this region. By Lemma 6.6, pipe q crosses with pipe
p. Contradiction.

Now assume pi, jq is . By M is saturated, we know pipe p does not have a before
pi, jq. We perform the three steps.

‚ Step 1: If pipe p does not exits column j ` 1, then it does not have a in M ,
contradicting Lemma 6.5.

‚ Step 2: In pi1, jq, the pipe p still does not have a yet, so pi1, jq cannot be ‚ . It
must be a fake crossing.

‚ Step 3: Say pi1, j`1q is a fake crossing between pipe p and pipe t. Pipe p must have a
real crossing under row i where pipe p goes horizontally. In other words, we can find
a real crossing pr`, c`q where pipe p goes horizontally with r` ą i. Take the pr`, c`q

where c` is maximal. Thus, from pr`, c`q to pi, j ` 1q, the pipe p is not allowed to
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travel horizontally in any tile. In other words, if pipe p enters a tile from the left, it
must exit from the top.

Next, we argue for i ď r ď r`, when pipe p exits row r, there is a pipe exiting
from the cell on its left, which has already crossed with pipe p.
We prove our claim by induction. The base case is when r “ r`. We know pr`, c`q

is a real crossing. Since pipe p enters pr`, c` ` 1q from the left, it exits row r` from
pr`, c` `1q. Indeed, pr`, c`q has a pipe exiting from the top, which just crossed with
pipe p. Now take i ď r ă r`. Say pipe p enters from the bottom of pr, cq. By our
inductive hypothesis, another pipe enters pr, c ´ 1q from the bottom. Say it is pipe
s If pipe p goes vertically in pr, cq, pipe s must go vertically in pr, c ´ 1q since if it
exits on the right, pr, cq would be a fake crossing. Now suppose pipe p exits pr, cq on
the right. Since pr, c ´ 1q has a pipe entering from the bottom, it must has a pipe

exiting from the right. Then pr, cq can be a fake crossing or a . Consider the region
enclosed by pipe t and pipe p from their real crossing to pi1, jq. The other pipe in
pr, cq is either pipe t, or lies in this region. In either case, it must cross with pipe p.

Since M is saturated, pr, cq is not a , so it is a fake crossing. Pipe p exits from the
top of pr, c ` 1q and some pipe that has crossed with it exits from the top of pr, cq.

Finally, our claim implies when pipe p exits pi, j ` 1q from the top, there must be
a pipe that exits pi, jq from the top. This contradicts to our assumption that pi, jq is

. □

Now we describe our algorithm. Take a saturatedM P MVPDpwqz {MVPDpwq. By Lemma 6.12,
we know M must have a or . We let pi, jq and pi, j`1q be the lowest such occurrence
where we first maximize i, and then j. We check droop1

pi,jqpMq is defined. The first two con-
ditions in Definition 6.7 are immediate. For the last condition, we let i1 ą i be the smallest

such that pi1, jq is not . It can be or . Assume it is a toward contradiction. Since

pi1 ´ 1, j ` 1q is , we know pi1, j ` 1q is also a . This contradicts the maximality of i.

Thus, pi1, jq is a and drooppi,jqpMq is well-defined.

Next, the algorithm computes droop1
pi,jqpMq, which is in MVPDpwq by Lemma 6.9. We

compare the weighty tiles of M and droop1
pi,jqpMq:

‚ The tile pi, jq is not weighty in M and droop1
i,jpMq. The tile pi, j ` 1q is weighty in

M and droop1
i,jpMq.

‚ For i ă r ă i1, the tile pr, jq and pr, j ` 1q are weighty in M and droop1
i,jpMq.

‚ The tile pi1, jq is not weighty in M but becomes weighty in droop1
i,jpMq. The tile

pi1, j ` 1q could be either weighty or not in M , but is not weighty in droop1
i,jpMq.

If droop1
i,jpMq has one more weighty tile than M , we let M 1 “ droop1

i,jpMq and terminate.
Then wtM 1pxq “ wtMpxqxi1 . Otherwise,

wtypdroop1
i,jpMqq “ pwtypMqztpi1, j ` 1uq Y tpi1, jqu,

so droop1
i,jpMq and M have the same number of weighty tiles. If droop1

i,jpMq is not saturated,

then we change a or a into a weighty tile and obtain M 1. Otherwise, we update the
variable M into droop1

pi,jqpMq and repeat the algorithm.
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It remains to show the algorithm eventually terminates. Let M1,M2, ¨ ¨ ¨ be the MVPDs
in the start of each iteration. We know wtypMkq is obtained from wtypMk´1q by turning an
pr, cq into pr, c ´ 1q. Thus, the algorithm must terminate.

Example 6.13. The following is an example of the algorithm. We start with a saturated

M P MVPDpwqz {MVPDpwq where w´1 has one-line notation 14253. We first apply droop1
p1,1q

and obtain anotherM2 P MVPDpwq. Notice thatM2 is also saturated and wtMpxq “ wtM2pxq.
We then apply droop1

p2,2q and obtain M 1. Notice that wtM 1pxq “ wtMpxqx3.

‚

‚
droop1

p1,1q

ÝÝÝÝÝÑ

‚ ‚
droop1

p2,2q

ÝÝÝÝÝÑ

‚ ‚

‚
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7. Conclusion

In this thesis, we introduced important polynomials in Schubert calculus, including Schu-
bert and Grothendieck polynomials. We studied their support through combinatorial objects
called pipedreams. We now provide some conjectures on the support of Grothendieck poly-
nomials and future directions for related topics.

7.1. Conjectures. In section 6, we introduced three conjectures on the support of Grothendieck
polynomials by Mészáros, Setiabrata, and St. Dizier [MSSD22]. We now introduce other
conjectures on Grothendieck polynomials and their supports.

It is conjectured by Huh, Matherne, Mészáros, and St. Dizier [HMMSD22] that ho-
mogenized Grothendieck polynomials are Lorentzian. In particular, this would imply that
the support of homogenized Grothendieck polynomials are M-convex. Or equivalently, the
support forms a saturated Newton polytope. It is already proven for several families of spe-
cial permutations that their homogenized Grothendieck polynomials are M-convex [EY17,
MSD20, HMSSD23, CCRMM24]. However, the general case remains open. M-convexity of
homogenized Grothendieck polynomials would imply all three conjectures on the support of
Grothendieck mentioned in section 6.

Ross and Yong [RY13] conjectured a K-Kohnert rule for Grothendieck polynomials on
Rothe diagrams of permutations. Robichaux [Rob24] showed that this conjecture fails by
providing a counter example and provided an updated version of the conjecture.

7.2. Future directions. Schubert and Grothendieck polynomials can be extended to a
“quantum” direction. Brenti, Fomin, and Postnikov [BFP99] defined quantum bruhat graphs
to study the 3-point Gromov-Witten invariants of the flag variety, which are the structure
constants of the small quantum cohomology ring. Quantum bruhat graphs are also used to
study path Schubert polynomials [Pos05] and tilted Richardson varities [GGG23]. Quantum
double Schubert polynomials are generalizations of double Schubert polynomials. They are
polynomial representatives of Schubert classes in the torus-equivariant quantum cohomology
of the complete flag variety. Le, Ouyang, Tao, Restivo, and Zhang [LOT`24] generalized
bumpless pipedreams to give a combinatorial formula for quantum double Schubert poly-
nomials. They are also interested in a potential quantum version of pipedreams as well as
a quantum version of the Gao-Huang bijection [GH23]. A quantum version of non-reduced
bumpless pipedream (or pipedreams) that computes quantum Grothendieck polynomials is
also yet to be discovered.

Lascoux polynomials, defined by Alain Lascoux [Las04], are polynomials labeled by com-
positions. They form a basis for the ring of polynomials. Shimozono and Yu [SY23] gave an
expansion of Grothendieck polynomials into Lascoux polynomials using increasing tableaux.
It is believed that conjecture 6.2 is true for the support of Lascoux polynomials. There-
fore, one might want to studying the Lascoux polynomials that appear in a Grothendieck
polynomial’s expansion.
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