Department of Mathematics,
University of California San Diego
****************************
Math 292 - Topology Seminar
Lisa Piccirillo
MIT
Knot concordance and exotica
Abstract:
One well-known strategy for distinguishing smooth structures on closed 4-manifolds is to produce a knot $K$ in $S^3$ which is (smoothly) slice in one smooth filling $W$ of $S^3$ but not slice in some homeomorphic smooth filling $W’$. There are many techniques for distinguishing smooth structures on complicated closed 4-manifolds, but this strategy stands out for it’s potential to work for 4-manifolds $W$ with very little algebraic topology. However, this strategy had never actually been used in practice, even for complicated $W$. I’ll discuss joint work with Manolescu and Marengon which gives the first application of this strategy. I’ll also discuss joint work with Manolescu which gives a systematic approach towards using this strategy to produce exotic definite closed 4-manifolds.
Host: Jianfeng Lin
April 6, 2021
11:30 AM
Zoom information: Meeting ID: 933 6734 4286 Password: topology
****************************