Department of Mathematics,
University of California San Diego
****************************
Joint UCI-UCSD Geometry Seminar
Jacob Bernstein
Massachusetts Institute of Technology
Helicoid-Like Minimal Disks
Abstract:
Colding and Minicozzi have shown that if an embedded minimal disk in $B_R\subset\mathbb{R}^3$ has large curvature then in a smaller ball, on a scale still proportional to $R$, the disk looks roughly like a piece of a helicoid. In this talk, we will see that near points whose curvature is relatively large the description can be made more precise. That is, in a neighborhood of such a point (on a scale $s$ proportional to the inverse of the curvature of the point) the surface is bi-Lipschitz to a piece of a helicoid. Moreover, the Lipschitz constant goes to 1 as $Rs$ goes to $\infty$ . This follows from Meeks and Rosenberg's result on the uniqueness of the helicoid of which, time permitting, we will discuss a new proof. Joint work with C. Breiner.
Hosts: Ben Weinkove and Lei Ni
December 3, 2008
4:00 PM
AP&M 6402
****************************