Department of Mathematics,
University of California San Diego
****************************
Math 209 - Number Theory
Cristian Popescu
UCSD
Hecke characters and the Quillen K-theory of number fields
Abstract:
First, I will describe how our results (joint with Greither) on the Brumer-Stark conjecture lead to a new construction of Hecke characters for CM number fields, generalizing A. Weil's Jacobi sum Hecke characters. Second, I will show how the values of these characters can be used to construct special elements in the even K-groups of CM and totally real number fields. Several applications ensue: a general construction of Euler Systems in the odd K-theory of CM and totally real number fields; a K-theoretic reformulation (and potential proof strategy) of a classical and wide open conjecture of Iwasawa on class groups of cyclotomic fields; potential new insights into Hilbert's 12th problem for CM number fields etc. Time permitting, I will touch upon some of these applications as well. This is based on joint work with G. Banaszak (Poland).
May 1, 2014
2:00 PM
AP&M 7321
****************************