Printable PDF
Department of Mathematics,
University of California San Diego

****************************

Math 209: Number Theory Seminar

Keegan Ryan

UC San Diego

Fast Practical Lattice Reduction through Iterated Compression

Abstract:

We introduce a new lattice basis reduction algorithm with approximation guarantees analogous to the LLL algorithm and practical performance that far exceeds the current state of the art. We achieve these results by iteratively applying precision management techniques within a recursive algorithm structure and show the stability of this approach. We analyze the asymptotic behavior of our algorithm, and show that the heuristic running time is $O(n^{\omega}(C+n)^{1+\varepsilon})$ for lattices of dimension $n$, $\omega\in (2,3]$ bounding the cost of size reduction, matrix multiplication, and QR factorization, and $C$ bounding the log of the condition number of the input basis $B$. This yields a running time of $O\left(n^\omega (p + n)^{1 + \varepsilon}\right)$ for precision $p = O(\log \|B\|_{max})$ in common applications. Our algorithm is fully practical, and we have published our implementation. We experimentally validate our heuristic, give extensive benchmarks against numerous classes of cryptographic lattices, and show that our algorithm significantly outperforms existing implementations.

[pre-talk at 1:20PM]

April 20, 2023

2:00 PM

APM 6402 and Zoom; see https://www.math.ucsd.edu/~nts/

****************************