Printable PDF
Department of Mathematics,
Department of Mathematics,
University of California San Diego
****************************
Math 292
Zhouli Xu
UCLA
Equivariant Dunn Additivity
Abstract:
The Boardman-Vogt tensor product of operads encodes the notion of interchanging algebraic structures. A classic result of Dunn tells us that the tensor product of two little cube operads is equivalent to a little cube operad with the dimensions added together. As models for $\mathbb{E}_k$-operads, this reflects a defining property of these operads.
In this talk, we will explore some equivariant generalizations to Dunn’s additivity. Along the way, we will play with little star-shaped operads, question if we really need group representations for equivariant operads, and learn to love (and hate) the tensor product.
May 23, 2023
4:30 PM
APM 7321
****************************