Printable PDF
Department of Mathematics,
University of California San Diego

****************************

Math 211A: Algebra Seminar

Dr. Agustina Czenky

University of Southern California

Cochain valued TQFTs from nonsemisimple modular tensor categories

Abstract:

Consider a finite modular tensor category $\mathcal A$. In [DGGPR] the authors exhibit a 3-dimensional topological field theory  $Z_{\mathcal A}: \operatorname{Bord}_{\mathcal A} \to \operatorname{Vect}$, which, in the case where $\mathcal A$ is semisimple, recovers the usual Reshetikhin-Turaev TQFT. In the present work we show that this extends naturally to a TQFT $Z_{\operatorname{Ch}(\mathcal A)}$, which takes values in the symmetric tensor category $\operatorname{Ch(Vect)}$ of linear cochains. This cochain valued theory furthermore respects (certain classes of) homotopies.

[DGGPR] M. De Renzi, A. M. Gainutdinov, N. Geer, B. Patureau-Mirand, and I. Runkel. 3-dimensional TQFTs from non-semisimple modular categories. Sel. Math. New Ser., 28(2):42, 2022.

Host: Karthik Ganapathy

March 2, 2026

3:00 PM

APM 7321

Research Areas

Algebra

****************************